【題目】如圖,點C為線段AB上一點,△ACD、△CBE都是等邊三角形,AE交DC于點M,BD交CE于點N,下列說法一定正確的是________(請把你認(rèn)為正確答案的序號填在橫線上)
①AE=BD;②∠AEC=∠BDC;③AM=DN;④DM=CN;⑤CM=MN;⑥MN∥AB.
【答案】①③⑤⑥
【解析】
根據(jù)等邊三角形的性質(zhì)證明△ACE≌△DCB,故可判斷①②,故而證明△ACM≌△DCN,故可判斷③④,從而證明△CMN為等邊三角形,故可判斷⑤⑥.
∵△DAC、△ECB都是等邊三角形,
∴AC=CD,BC=CE,∠ACD=∠BCE=60°,
∴∠ACM=∠DCN=∠BCE=60°
∴∠ACE=∠BCD=120°,
在△ACE與△DCB中,
,
∴△ACE≌△DCB,
∴AE=BD,①正確,∠AEC=∠DBC,②錯誤;
∵△ACE≌△DCB
∴∠CAM=∠CDN
在△ACM與△DCN中,
,
∴△ACM≌△DCN;
∴AM=DN,③正確, CM=CN,故④錯誤;
由CM=CN,∠DCN=60°,
∴△CMN是等邊三角形,
∴CM=MN,⑤正確;
故∠CMN=∠ACD,
∴MN∥AB,故⑥正確;
故答案為:①③⑤⑥.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
學(xué)習(xí)了三角形全等的判定方法(即“SAS”“ASA”“AAS”“SSS”)和直角三角形全等的判定方法(即“HL”)后,小聰繼續(xù)對“兩個三角形滿足兩邊和其中一邊的對角對應(yīng)相等”的情形進行研究
小聰將命題用符號語言表示為:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E.
小聰?shù)奶骄糠椒ㄊ菍Α?/span>B分為“直角、鈍角、銳角”三種情況進行探究.
第一種情況:當(dāng)∠B 是直角時,如圖1,△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E=90°,根據(jù)“HL”定理,可以知道Rt△ABC≌Rt△DEF.
第二種情況:當(dāng)∠B 是銳角時,如圖2,BC=EF,∠B=∠E<90°,在射線EM上有點D,使DF=AC,畫出符合條件的點D,則△ABC和△DEF的關(guān)系是 ;
A.全等 B.不全等 C.不一定全等
第三種情況:當(dāng)∠B是鈍角時,如圖3,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E>90°.過點C作AB邊的垂線交AB延長線于點M;同理過點F作DE邊的垂線交DE延長線于N,根據(jù)“ASA”,可以知道△CBM≌△FEN,請補全圖形,進而證出△ABC≌△DEF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點,,且,連接,點是的中點,連接,則__________,___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC中,AC=BC,點D,E分別在邊AB, BC 上,把△BDE沿直線DE翻折,使點B落在點B'處,DB',EB'分別交AC于點F,G,若∠ADF=80°,則∠EGC的大小為( ).
A.60°B.70°
C.80°D.90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A、B、C、D為矩形的四個頂點,AB=16cm,AD=6cm,動點P、Q分別從點A、C同時出發(fā),點P以3cm/s的速度向點B移動,一直到達(dá)B為止,點Q以2 cm/s的速度向D移動.
(1)P、Q兩點從出發(fā)開始到幾秒?四邊形PBCQ的面積為33cm2;
(2)P、Q兩點從出發(fā)開始到幾秒時?點P和點Q的距離是10cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰三角形△ABC的腰長AB=AC=25,BC=40,動點P從B出發(fā)沿BC向C運動,速度為10單位/秒.動點Q從C出發(fā)沿CA向A運動,速度為5單位/秒,當(dāng)一個點到達(dá)終點的時候兩個點同時停止運動,點P′是點P關(guān)于直線AC的對稱點,連接P′P和P′Q,設(shè)運動時間為t秒.
(1)若當(dāng)t的值為m時,PP′恰好經(jīng)過點A,求m的值;
(2)設(shè)△P′PQ的面積為y,求y與t之間的函數(shù)關(guān)系式(m<t≤4) ;
(3)是否存在某一時刻t,使PQ平分角∠P′PC?存在,求相應(yīng)的t值,不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,∠BAC=54°,∠BAC的平分線與AB的垂直平分線交于點O,將∠C沿EF(E在BC上,F在AC上)折疊,點C與點O恰好重合,則∠OEC的度數(shù)是( )
A.128°B.118°C.108°D.98°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com