已知拋物線y=(3-m)x2+2(m-3)x+4m-m2的最低點A的縱坐標是3,直線y=mx+b經(jīng)過點A,與y軸交于點B,與x軸交于點C.
(1)求拋物線與直線AB的解析式.
(2)將直線AB繞點O順時針旋轉(zhuǎn)90°,與x軸交于點D,與y軸交于點E,求sin∠BDE的值.
(3)過B點作x軸的平行線BG,點M在直線BG上,且到拋物線的對稱軸的距離為6,設(shè)點N在直線BG上,請你直接寫出使得∠AMB+∠ANB=45°的點N的坐標.
(1)∵y=(3-m)x2+2(m-3)x+4m-m2的,
∴拋物線的對稱軸x=-
b
2a
=-
2(m-3)
2(3-m)
=1.
∵拋物線y=(3-m)x2+2(m-3)x+4m-m2的最低點A的縱坐標是3
∴拋物線的頂點為A(1,3)
∴m2-5m+6=0,
∴m=3或m=2,
∵3-m>0,
∴m<3
∴m=2,
∴拋物線的解析式為:y=x2-2x+4,
直線為y=2x+b.
∵直線y=mx+b經(jīng)過點A(1,3)
∴3=2+b,
∴b=1.
∴直線AB為:y=2x+1;

(2)令x=0,則y=1,)令y=0,則x=-
1
2
,
∴B(0,1),C(-
1
2
,0)
將直線AB繞O點順時針旋轉(zhuǎn)900,設(shè)DE與BC交于點F
∴D(1,0),E(0,
1
2
),∠CFD=90°,
∴OB=OD=1OC=
1
2
,∴CD=
3
2

在Rt△BOC中,由勾股定理,得CB=
5
2
,BD=
2

∵CD•OB=CB•DF,
∴DF=
3
5
5
,
∴由勾股定理,得BF=
5
5
,
∴Sin∠BDE=
BF
BD
=
5
5
2
=
10
10


(3)如圖2,在BG上取一點Q,使AP=QP,
∴∠AQP=45°.
∴∠ANB+∠QAN=∠QAM+∠AMB=45°.
∵∠AMB+∠ANB=45°,
∴∠ANB=∠QAM,
∴△AQN△MQA,
AQ
MQ
=
QN
QA

∵AD=3,OD=1,
∴AP=QP=2,
∴QM=4,AQ=2
2
,
∵MP=6,
∴MQ=4.
2
2
4
=
QN
2
2
,
∴QN=2,
∴BN=5.
∴N(5,1);
如圖3,在BG上取一點Q,使AP=QP,
∴∠AQP=45°.
∴∠ANB+∠AMB=∠QAM+∠AMB=45°.
∴∠ANB=∠QAM,
∴△AQM△NAM,
AM
MN
=
QM
AM

∵AD=3,OD=1,
∴AP=QP=2,
∴QM=4,BM=7,AQ=2
2
,
∵MP=6,
∴MQ=4.AM=2
10

2
10
MN
=
4
2
10
,
∴MN=10,
∴BN=3.
∴N(-3,1);
∴N(-3,1)或(5,1).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在直角坐標系中,拋物線y=x2-x-2過A、B、C三點,在對稱軸上存在點P,以P、A、C為頂
點三角形為直角三角形.則點P的坐標是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

世紀廣場中心標志性建筑處有高低不同的各種噴泉,其中一支高度為1米的噴水管,噴水最高點A離地面為3米.此時A點離噴水口水平距離為
1
2
米,在如圖所示直角坐標系中,這支噴泉的函數(shù)關(guān)系式是______.(不要求指出自變量x的取值范圍).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,點O為原點,已知點A的坐標為(2,2),點B、C在y軸上,BC=8,AB=AC,直線AB與x軸相交于點D.
(1)求點C、D的坐標;
(2)求圖象經(jīng)過A、C、D三點的二次函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

小張同學(xué)善于改進學(xué)習(xí)方法,他發(fā)現(xiàn)對解題過程進行回顧反思,效果會更好.某一天他利用30分鐘時間進行自主學(xué)習(xí).假設(shè)他用于解題的時間x(單位:分鐘)與學(xué)習(xí)收益量y的關(guān)系如圖甲所示,用于回顧反思的時間x(單位:分鐘)與學(xué)習(xí)收益量y的關(guān)系如圖乙所示(其中OA是拋物線的一部分,A為拋物線的頂點),且用于回顧反思的時間不超過用于解題的時間.
問:小張如何分配解題和回顧反思的時間,才能使這30分鐘的學(xué)習(xí)收益總量最大?
(學(xué)習(xí)收益總量=解題的學(xué)習(xí)收益量+回顧反思的學(xué)習(xí)收益量)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

施工隊要修建一個橫斷面為拋物線的公路隧道,其高度為6米,寬度OM為12米.現(xiàn)以O(shè)點為原點,OM所在直線為x軸建立直角坐標系
(1)求出這條拋物線的函數(shù)解析式,并寫出自變量x的取值范圍;
(2)隧道下的公路是雙向行車道(正中間是一條寬1米的隔離帶),其中的一條行車道能否行駛寬2.5米、高5米的特種車輛?請通過計算說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線y=
1
4
x2+1,直線y=kx+b經(jīng)過點B(0,2)
(1)求b的值;
(2)將直線y=kx+b繞著點B旋轉(zhuǎn)到與x軸平行的位置時(如圖1),直線與拋物線y=
1
4
x2+1相交,其中一個交點為P,求出P的坐標;
(3)將直線y=kx+b繼續(xù)繞著點B旋轉(zhuǎn),與拋物線相交,其中一個交點為P'(如圖②),過點P'作x軸的垂線P'M,點M為垂足.是否存在這樣的點P',使△P'BM為等邊三角形?若存在,請求出點P'的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

△ABC中,∠A,∠B,∠C的對邊分別為a,b,c,拋物線y=x2-2ax+b2交x軸于兩點M,N,交y軸于點P,其中M的坐標是(a+c,0).
(1)求證:△ABC是直角三角形;
(2)若S△MNP=3S△NOP,①求cosC的值;②判斷△ABC的三邊長能否取一組適當?shù)闹,使三角形MND(D為拋物線的頂點)是等腰直角三角形?如能,請求出這組值;如不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示的拋物線是二次函數(shù)y=ax2-x+a2-1的圖象,那么a的值是______.

查看答案和解析>>

同步練習(xí)冊答案