如圖,直線y=kx+4與x軸、y軸分別交于點C、D,點C的坐標為(-8,0),點A的坐標為(-6,0).
(1)求k的值和該直線的函數(shù)解析式;
(2)若點P(x,y)是第二象限內(nèi)的直線上的一個動點,當點P運動過程中,試寫出△OPA的面積S與x的函數(shù)關系式,并寫出自變量x的取值范圍.
(1)∵C(-8,0),∴0=-8k+4,
∴k=
1
2
,
∴y=
1
2
x+4.

(2)如圖所示,過P作PM⊥OC于M,則:
S=
1
2
OA•PM=
1
2
×6×y=3y=3×(
1
2
x+4
),
∴S=
3
2
x+12,
∵P在第二象限內(nèi)的直線上的一個動點,
∴-8<x<0.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如示意圖,在平面直角坐標系中,O為坐標原點,點A是x軸的負半軸上一點,以AO為直徑的⊙P經(jīng)過點C(-8,4).點E(m,n)在⊙P上,且-10<m≤-5,n<0,CE與x軸相交于點M,過C點作直線CN交x軸于點N,交⊙P于點F,使得△CMN是以MN為底的等腰三角形,經(jīng)過E、F兩點的直線與x軸相交于點Q.
(1)求出點A的坐標;
(2)當m=-5時,求圖象經(jīng)過E、Q兩點的一次函數(shù)的解析式;
(3)當點E(m,n)在⊙P上運動時,猜想∠OQE的大小會發(fā)生怎樣的變化?請對你的猜想加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知一次函數(shù)y=-
1
2
x+b的圖象經(jīng)過點A(2,3),AB⊥x軸,垂足為B,連接OA.
(1)求此一次函數(shù)的解析式;
(2)設點P為直線y=-
1
2
x+b上的一點,且在第一象限內(nèi),經(jīng)過P作x軸的垂線,垂足為Q.若S△POQ=
5
4
S△AOB,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知一次函數(shù)o=k著+b(k≠七)的圖象經(jīng)過A(圖,-w)和B(-2,4);
(w)求這個函數(shù)的解析式;
(2)求該函數(shù)圖象與o軸的交點C和與著軸的交點D的坐標;
(圖)求△OCD的面積(O為坐標原點).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,直線AB對應的函數(shù)解析式是______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

探究與應用:在學習幾何時,我們可以通過分離和構造基本圖形,將幾何“模塊”化.例如在相似三角形中,K字形是非常重要的基本圖形,可以建立如下的“模塊”(如圖①):
(1)請就圖①證明上述“模塊”的合理性.已知:∠A=∠D=∠BCE=90°,求證:△ABC△DCE;
(2)請直接利用上述“模塊”的結論解決下面兩個問題:
①如圖②,已知點A(-2,1),點B在直線y=-2x+3上運動,若∠AOB=90°,求此時點B的坐標;
②如圖③,過點A(-2,1)作x軸與y軸的平行線,交直線y=-2x+3于點C、D,求點A關于直線CD的對稱點E的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖是某汽車行駛的路程S(千米)與時間t(分)的函數(shù)關系圖.觀察圖中所提供的信息,解答下列問題:
(1)汽車在前9分鐘內(nèi)的平均速度是______千米/分;
(2)當16≤t≤30時,求S與t的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知一次函數(shù)y=2x+4的圖象與x軸、y軸分別交于點A、B,且BCAO,梯形AOBC的面積為10.
(1)求點A、B、C的坐標;
(2)求直線AC的表達式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知等腰三角形的周長是20cm,設底邊長為y,腰長為x,求y與x的函數(shù)關系式,并求出自變量x的取值范圍.

查看答案和解析>>

同步練習冊答案