【題目】如圖,正八邊形各邊中點(diǎn)構(gòu)成四邊形,則正八邊形邊長與AB的比是( )
A. 2﹣B. C. D.
【答案】A
【解析】
過E作EF⊥AD于F,過G作GH⊥AD于H,于是得到△AEF與△DGH是等腰直角三角形,四邊形EFHG是矩形,根據(jù)等腰直角三角形和矩形的性質(zhì)得到AF=EF=DH=GH,EG=FH,設(shè)AF=EF=GH=DH=k,得到EG=2AE=2k,AB=AD=2k+2k,于是得到結(jié)論.
過E作EF⊥AD于F,過G作GH⊥AD于H,
則△AEF與△DGH是等腰直角三角形,四邊形EFHG是矩形,
∴AF=EF=DH=GH,EG=FH,
設(shè)AF=EF=GH=DH=k,
∴AE=DG=k,
∴EG=2AE=2k,
∴AB=AD=2k+2k,
∴正八邊形邊長與AB的比=,
故選A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《孫子算經(jīng)》是唐初作為“算學(xué)”教科書的著名的《算經(jīng)十書》之一,共三卷,上卷敘述算籌記數(shù)的制度和乘除法則,中卷舉例說明籌算分?jǐn)?shù)法和開平方法,都是了解中國古代籌算的重要資料,下卷收集了一些算術(shù)難題,“雞兔同籠”便是其中一題.下卷中還有一題,記載為:“今有甲乙二人,持錢各不知數(shù).甲得乙中半,可滿四十八;乙得甲太半,亦滿四十八.問甲、乙二人持錢各幾何?”意思是:“甲、乙兩人各有若干錢,如果甲得到乙所有錢的一半,那么甲共有錢48文.如果乙得到甲所有錢的,那么乙也共有錢48文.問甲、乙二人原來各有多少錢?”設(shè)甲原有錢x文,乙原有錢y文,可得方程組( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,拋物線過、兩點(diǎn),交軸于點(diǎn),連接.
(1)求該拋物線的表達(dá)式和對稱軸;
(2)點(diǎn)是拋物線對稱軸上一動(dòng)點(diǎn),當(dāng)是以為直角邊的直角三角形時(shí),求所有符合條件的點(diǎn)的坐標(biāo);
(3)如圖②,將拋物線在上方的圖象沿折疊后與軸交與點(diǎn),求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)店專售一款電動(dòng)牙刷,其成本為20元/支,銷售中發(fā)現(xiàn),該商品每天的銷售量y(支)與銷售單價(jià)x(元/支)之間存在如圖所示的關(guān)系.
(1)請求出y與x的函數(shù)關(guān)系式;
(2)該款電動(dòng)牙刷銷售單價(jià)定為多少元時(shí),每天銷售利潤最大?最大利潤是多少元?
(3)近期武漢爆發(fā)了“新型冠狀病毒”疫情,該網(wǎng)店店主決定從每天獲得的利潤中抽出 200 元捐贈(zèng)給武漢,為了保證捐款后每天剩余利潤不低于550元,如何確定該款電動(dòng)牙刷的售單價(jià)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了促進(jìn)各科均衡發(fā)展,學(xué)校準(zhǔn)備在九年級(jí)下期開設(shè)四科補(bǔ)短班,分別是英語、數(shù)學(xué)、物理和化學(xué).為提前了解同學(xué)們最想?yún)⒓拥目颇,學(xué)校在開學(xué)前采用隨機(jī)抽樣方式進(jìn)行了調(diào)查,并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請根據(jù)圖中提供的信息完成以下問題.
(1)扇形統(tǒng)計(jì)圖中,“英語”所在扇形的圓心角度數(shù)是 ,并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)在被調(diào)查的學(xué)生中,選擇化學(xué)的有2名女同學(xué),其余為男同學(xué),現(xiàn)要從中隨機(jī)抽取2名同學(xué)參加學(xué)科座談會(huì),請用畫樹狀圖或列表的方法求出所抽取的2名同學(xué)恰好是1名男同學(xué)和1名女同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A,B,C三點(diǎn)均在⊙O上,⊙O外一點(diǎn)F,有OA⊥CF于點(diǎn)E,AB與CF相交于點(diǎn)G,有FG=FB,AC∥BF.
(1)求證:FB是⊙O的切線.
(2)若tan∠F=,⊙O的半徑為,求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù).
(1)求函數(shù)圖象的頂點(diǎn)坐標(biāo),對稱軸和與坐標(biāo)軸的交點(diǎn)坐標(biāo),并畫出函數(shù)的大致圖象.
(2)若是函數(shù)圖象上的兩點(diǎn),且,請比較的大小關(guān)系(直接寫出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形OABC是矩形,ADEF是正方形,點(diǎn)A、D在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,點(diǎn)F在AB上,點(diǎn)B,E在反比例函數(shù)y=的圖象上,OA=1,OC=6,試求出正方形ADEF的邊長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖、已知A(4,)、B(1,2)是一次函數(shù)y=kx+b與反比例函數(shù)y=(m>0)圖象的兩個(gè)交點(diǎn),AC⊥x軸于C,BD⊥y軸于D,
(1)根據(jù)圖象直接回答:在第一象限內(nèi),當(dāng)x取何值時(shí),一次函數(shù)大于反比例函數(shù)的值?
(2)求一次函數(shù)表達(dá)式及m的值.
(3)P是線段AB上的一點(diǎn),連接PC、PD,若△BDP∽△ACP,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com