【題目】如圖,⊙M與x軸交于A、B兩點(diǎn),與y軸切于點(diǎn)C,且OA,OB的長是方程x2﹣4x+3=0的解.
(1)求M點(diǎn)的坐標(biāo).
(2)若P是⊙M上一個(gè)動(dòng)點(diǎn)(不包括A、B兩點(diǎn)),求∠APB的度數(shù).
【答案】(1)(2,);(2)30°或150°.
【解析】
(1)過點(diǎn)M作ME⊥x軸于點(diǎn)E,連接MA,MC,解出方程后可知OA=1,OB=3,然后即可求出OE的長度,由于C是切點(diǎn),所以MC是半徑,又因?yàn)?/span>MC=OE,從而可知⊙M的半徑,利用垂徑定理即可求出M的坐標(biāo).
(2)由于點(diǎn)P的位置不確定,需要分兩種情況進(jìn)行討論,可根據(jù)圓周角定理以及圓內(nèi)接四邊形的性質(zhì)求解.
解:(1)過點(diǎn)M作ME⊥x軸于點(diǎn)E,連接MA,MC,
∵OA,OB的長是方程x2﹣4x+3=0的解,
∴解得x=1或x=3,
∴OA=1,OB=3,
∴A(1,0),B(3,0)
由垂徑定理可知:AE=BE,
∴E(2,0),
∴OE=2,AE=1,
∵⊙M與y軸切于點(diǎn)C,
∴MC⊥OC,
∵ME⊥x軸,y軸⊥x軸,MC、AM是⊙M的半徑,
∴MC=AM=OE=2,
∴由勾股定理可知:ME==,
∴M的坐標(biāo)為(2,);
(2)連接MB、AM
當(dāng)點(diǎn)P在x軸上方時(shí),
由(1)可知:AM=MB=2,AB=3-1=2,
∴∠AMB=60°,
∴由圓周角定理可知:∠APB=∠AMB=30°,
當(dāng)點(diǎn)P在x軸下方時(shí),
∴由圓內(nèi)接四邊形的性質(zhì)可知:此時(shí)∠APB=180°﹣30°=150°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016青海省西寧市)如圖,點(diǎn)A的坐標(biāo)為(0,1),點(diǎn)B是x軸正半軸上的一動(dòng)點(diǎn),以AB為邊作等腰直角△ABC,使∠BAC=90°,設(shè)點(diǎn)B的橫坐標(biāo)為x,點(diǎn)C的縱坐標(biāo)為y,能表示y與x的函數(shù)關(guān)系的圖象大致是( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的正方形網(wǎng)格中,△ABC的頂點(diǎn)均在格點(diǎn)上,請(qǐng)?jiān)谒o直角坐標(biāo)系中按要求畫圖和解答下列問題:
(1)將△ABC沿x軸翻折后再沿x軸向右平移1個(gè)單位,在圖中畫出平移后的△A1B1C1.
(2)作△ABC關(guān)于坐標(biāo)原點(diǎn)成中心對(duì)稱的△A2B2C2.
(3)求B1的坐標(biāo) C2的坐標(biāo) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AD=4cm,AB=8cm,點(diǎn)P從點(diǎn)A出發(fā)沿邊上向點(diǎn)勻速運(yùn)動(dòng),同時(shí)點(diǎn)從點(diǎn)出發(fā)沿邊上向點(diǎn)勻速運(yùn)動(dòng),速度都是,運(yùn)動(dòng)時(shí)間是,交于點(diǎn),點(diǎn)關(guān)于的對(duì)稱點(diǎn)是,射線分別與,交于點(diǎn),.
(1)= °;QF= ,= .(用含的代數(shù)式表示)
(2)當(dāng)點(diǎn)與點(diǎn)重合時(shí), 如圖②,求的值.
(3)探究:在點(diǎn),運(yùn)動(dòng)過程中,
①的值是否是定值?若是,請(qǐng)求出這個(gè)值;若不是,請(qǐng)說明理由.
②為何值時(shí),以點(diǎn),,為頂點(diǎn)的三角形與相似?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,點(diǎn)D是BC上一定點(diǎn).動(dòng)點(diǎn)P從C出發(fā),以2cm/s的速度沿C→A→B方向運(yùn)動(dòng),動(dòng)點(diǎn)Q從D出發(fā),以1cm/s的速度沿D→B方向運(yùn)動(dòng).點(diǎn)P出發(fā)5 s后,點(diǎn)Q才開始出發(fā),且當(dāng)一個(gè)點(diǎn)達(dá)到B時(shí),另一個(gè)點(diǎn)隨之停止.圖2是當(dāng)時(shí)△BPQ的面積S(cm2)與點(diǎn)P的運(yùn)動(dòng)時(shí)間t(s)的函數(shù)圖象.
(1)CD = , ;
(2)當(dāng)點(diǎn)P在邊AB上時(shí),為何值時(shí),使得△BPQ與△ABC為相似?
(3)運(yùn)動(dòng)過程中,求出當(dāng)△BPQ是以BP為腰的等腰三角形時(shí)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,點(diǎn)A在以BC為直徑的半圓內(nèi).請(qǐng)僅用無刻度的直尺分別按下列要求畫圖(保留畫圖痕跡).
(1)在圖1中作弦EF,使EF∥BC;
(2)在圖2中作出圓心O.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD交AB于點(diǎn)P,AP=2,BP=6,∠APC=30°,則CD的長為( 。
A. B. 2 C. 2 D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=4,AC與BD交于點(diǎn)O, N是AO的中點(diǎn),點(diǎn)M在BC邊上,且BM=3, P為對(duì)角線BD上一點(diǎn),當(dāng)對(duì)角線BD平分∠NPM時(shí),PM-PN值為( )
A.1B.C.2D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解方程
(1)x2﹣5x+6=0;
(2)x(x+5)=5x+25;
(3)2x2﹣3x﹣5=0;
(4)(x﹣1)2﹣(2x+3)2=0
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com