【題目】如圖,二次函數(shù)的圖象交軸于兩點,并經(jīng)過點,已知點坐標(biāo)是,點坐標(biāo)是.
(1)求二次函數(shù)的解析式;
(2)求函數(shù)圖象的頂點坐標(biāo)及點的坐標(biāo);
(3)二次函數(shù)的對稱軸上是否存在一點,使得的周長最?若點存在,求出點的坐標(biāo),若點不存在,請說明理由.
【答案】(1)
(2)(4,2),(6,0)
(3)存在,C(4,2)
【解析】
(1)只需運(yùn)用待定系數(shù)法就可求出二次函數(shù)的解析式;
(2)只需運(yùn)用配方法就可求出拋物線的頂點坐標(biāo),只需令y=0就可求出點D的坐標(biāo);
(3)連接CA,由于BD是定值,使得△CBD的周長最小,只需CD+CB最小,根據(jù)拋物線是軸對稱圖形可得CA=CD,只需CA+CB最小,根據(jù)“兩點之間,線段最短”可得:當(dāng)點A、C、B三點共線時,CA+CB最小,只需用待定系數(shù)法求出直線AB的解析式,就可得到點C的坐標(biāo).
(1)把A(2,0),B(8,6)代入,得
解得
∴二次函數(shù)的解析式為
故答案為:
(2)由得二次函數(shù)圖象的頂點坐標(biāo)為(4,2)
令y=0,得
解得:x1=2,x2=6,
∴D點的坐標(biāo)為(6,0).
故答案為:(4,2),(6,0)
(3)二次函數(shù)的對稱軸上存在一點C,使得△CBD的周長最。
連接CA,如圖,
∵點C在二次函數(shù)的對稱軸x=4上,
∴xC=4,CA=CD,
∴△CBD的周長=CD+CB+BD=CA+CB+BD,
根據(jù)“兩點之間,線段最短”,可得當(dāng)點A、C、B三點共線時,CA+CB最小,此時,由于BD是定值,因此△CBD的周長最。
設(shè)直線AB的解析式為y=mx+n,
把A(2,0)、B(8,6)代入y=mx+n,得
解得
∴直線AB的解析式為y=x2
當(dāng)x=4時,y=42=2,
∴當(dāng)二次函數(shù)的對稱軸上點C的坐標(biāo)為(4,2)時,△CBD的周長最。
故答案為:存在,C(4,2)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在每個小正方形的邊長為1的網(wǎng)格中,點A、B均為格點.
(Ⅰ)AB的長等于_____.
(Ⅱ)若點C是以AB為底邊的等腰直角三角形的頂點,點D在邊AC上,且滿足S△ABD=S△ABC.請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出線段BD,并簡要說明點D的位置是如何找到的(不要求證明)______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形的邊長為,在正方形外,,過作于,直線,交于點,直線交直線于點,則下列結(jié)論正確的是( )
①;②;③;
④若,則
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,.動點從點出發(fā),沿以每秒個單位長度的速度向終點運(yùn)動,當(dāng)點與點、不重合時,過點作交折線于點,以為邊向左作正方形.設(shè)正方形與重疊部分圖形的面積為(平方單位),點運(yùn)動的時間為(秒).
備用圖
(1)用含的代數(shù)式表示的長.
(2)直接寫出點在內(nèi)部時的取值范圍.
(3)求與之間的函數(shù)關(guān)系式.
(4)直接寫出點落在的中位線所在直線上時的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,E是AD的中點,延長CE,BA交于點F,連接AC,DF.
(1)求證:四邊形ACDF是平行四邊形;
(2)當(dāng)CF平分∠BCD時,寫出BC與CD的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(操作發(fā)現(xiàn))如圖(1),在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=45°,連接AC,BD交于點M.
①AC與BD之間的數(shù)量關(guān)系為 ;
②∠AMB的度數(shù)為 ;
(類比探究)如圖(2),在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,連接AC,交BD的延長線于點M.請計算的值及∠AMB的度數(shù);
(實際應(yīng)用)如圖(3),是一個由兩個都含有30°角的大小不同的直角三角板ABC、DCE組成的圖形,其中∠ACB=∠DCE=90°,∠A=∠D=30°且D、E、B在同一直線上,CE=1,BC= ,求點A、D之間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點,在二次函數(shù)的圖象上,點是函數(shù)圖象的頂點,則( )
A.當(dāng)時,的取值范圍是
B.當(dāng)時,的取值范圍是
C.當(dāng)時,的取值范圍是
D.當(dāng)時,的取值范圍是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一副三角板(△ABC與△DEF)如圖放置,點D在AB邊上滑動,DE交AC于點G,DF交BC于點H,且在滑動過程中始終保持DG=DH,若AC=2,則△BDH面積的最大值是( )
A.3B.3C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象交軸于、兩點,交軸于點,點為該二次函數(shù)圖象頂點.連接、及、.
(1)如圖1,若點的坐標(biāo),頂點坐標(biāo).
①求的值,并說明;
②如圖2,點是拋物線的對稱軸上一點,以點為圓心的圓經(jīng)過、兩點,且與直線相切,求點的坐標(biāo);
(2)若,點,點,如圖3,動點在直線上方的二次函數(shù)圖象上.過點作于點,是否存在點,使得中的某個角恰好等于的2倍?若存在,求出點的橫坐標(biāo):若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com