【題目】正方形中,是中點,點從點出發(fā)沿的路線勻速運動,到點停止,點從點出發(fā),沿路線勻速運動,、兩點同時出發(fā),點的速度是點速度的倍,當點停止時,點也同時停止運動,設秒時,正方形與重疊部分的面積為,關于的函數(shù)關系如圖2所示,則
(1)求正方形邊長;
(2)求的值;
(3)求圖2中線段所在直線的解析式.
【答案】(1)AB=12;(2);(3).
【解析】
(1)當t=0時,y=144-AB2,即可求解;
(2)y=S正方形AECD-S△APM-S△DQM得:y=144-3t-3mt,將點K(4,96)代入上式,即可求解;
(3)當4<t≤8時,y=S正方形ABCD-S梯形ABPM-S△DQM =180-21t,求得點E(8,12),同理可得點F(9,0),即可求解
(1)當時,,
解得:AB=12;
(2)當0≤t≤4時,如圖1所示,
即:,
將點K(4,96)代入上式并解得:;
(3)當時,
此時,點P在BC上,點Q在CD上,如下圖2所示:
,
當時,,
故點E(8,12),
同理可得點F(9,0),
將點E、F的坐標代入一次函數(shù)表達式:得:,解得:,
故線段EF所在直線的解析式為:.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(c≠0)過點(-1,0)和點(0,-2),且頂點在第四象限,設P=a+b+c,則P的取值范是( )
A.-2<P<-1B.-2<P<0C.-4<P<0D.-4<P<-2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】用適當?shù)姆椒ń庀铝蟹匠?/span>
(1)x2+10x+21=0
(2)
(3)
(4)
(5)
(6)3x(x+2)=5(x+2)
(7)(3x-2)2=(x+5)2
(8)5x(x-3)-(x-3)(x+1)=0
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,,AD平分∠BAC,交BC于點D,點O在AB上,⊙O經(jīng)過A、D兩點,交AC于點E,交AB于點F.
(1)求證:BC是⊙O的切線;
(2)若⊙O的半徑是2cm,E是弧AD的中點,求陰影部分的面積(結果保留π和根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場計劃購進甲、乙兩種商品,已知購進甲商品2件和乙商品1件共需50元,購進甲商品1件和乙商品2件共需70元.
(1)求甲、乙兩種商品每件的進價分別是多少元?
(2)商場決定甲商品以每件20元出售,乙商品以每件50元出售,為滿足市場需求,需購進甲、乙兩種商品共60件,若要保證獲利不低于1000元,則甲商品最多能購進多少件?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】教材呈現(xiàn):如圖是華師版九年級上冊數(shù)學教材第78頁的部分內(nèi)容.
例2 如圖,在中,分別是邊的中點,相交于點,求證:,
證明:連結.
請根據(jù)教材提示,結合圖①,寫出完整的證明過程.
結論應用:在中,對角線交于點,為邊的中點,、交于點.
(1)如圖②,若為正方形,且,則的長為 .
(2)如圖③,連結交于點,若四邊形的面積為,則的面積為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線過點(3,1),D為拋物線的頂點.直線l:經(jīng)過定點A.
(1)直接寫出拋物線的解析式和點A的坐標;
(2)如圖,直線l與拋物線交于P,Q兩點.
①求證:∠PDQ=90°;
②求△PDQ面積的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在正方形網(wǎng)格上有6個三角形:①△ABC;②△BCD;③△BDE;④△BFG;⑤△FGH;⑥△EFK.其中②~⑥中與①相似的是( )
A. ②③④ B. ③④⑤ C. ④⑤⑥ D. ②③⑥
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=x+6與x軸、y軸分別相交于點E、F,點A的坐標為(﹣6,0),P(x,y)是直線y=x+6上一個動點.
(1)在點P運動過程中,試寫出△OPA的面積s與x的函數(shù)關系式;
(2)當P運動到什么位置,△OPA的面積為,求出此時點P的坐標;
(3)過P作EF的垂線分別交x軸、y軸于C、D.是否存在這樣的點P,使△COD≌△FOE?若存在,直接寫出此時點P的坐標(不要求寫解答過程);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com