【題目】ABC的三個內角A,BC所對的邊分別是,下列條件中,不能判定△ABC是等腰三角形的是(

A.a3,b3,c4B.abc234

C.B50°,∠C80°D.A︰∠B︰∠C112

【答案】B

【解析】

由等腰三角形的定義與等角對等邊的判定定理,即可求得答案.

解:A、∵a=3b=3,c=4,
a=b,
∴△ABC是等腰三角形;
B、∵abc=234,
a≠b≠c,
∴△ABC不是等腰三角形;
C、∵∠B=50°,∠C=80°,
∴∠A=180°-B-C=50°
∴∠A=B,
AC=BC,
∴△ABC是等腰三角形;
D、∵∠A:∠B:∠C=112,
∴∠A=B,
AC=BC
∴△ABC是等腰三角形.
故選:B

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】(本題滿分10)閱讀下列材料:

1)關于x的方程x2-3x+1=0x≠0)方程兩邊同時乘以得: ,

2a3+b3=a+b)(a2-ab+b2);a3-b3=a-b)(a2+ab+b2).

根據(jù)以上材料,解答下列問題:

1x2-4x+1=0x≠0),則= ______ , = ______ = ______ ;

22x2-7x+2=0x≠0),求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的方程.

(1)求證:無論k為何值,方程總有實數(shù)根.

(2)設是方程的兩個根,記,S的值能為2嗎?若能,求出此時k的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠AOB=90°,點C、D分別在射線OA、OB上,CE是∠ACD的平分線,CE的反向延長線與∠CDO的平分線交于點F

1)當∠OCD=50°(圖1),試求∠F

2)當C、D在射線OAOB上任意移動時(不與點O重合)(圖2),∠F的大小是否變化?若變化,請說明理由;若不變化,求出∠F

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)計算并觀察下列各式:

1個:(ab)(a+b)______

2個:(ab)(a2+ab+b2)______;

3個:(ab)(a3+a2b+ab2+b3)_______;

……

這些等式反映出多項式乘法的某種運算規(guī)律.

(2)猜想:若n為大于1的正整數(shù),則(ab)(an1+an2b+an3b2+……+a2bn3+abn2+bn1)________;

(3)利用(2)的猜想計算:2n1+2n2+2n3+……+23+22+1______

(4)拓廣與應用:3n1+3n2+3n3+……+33+32+1_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解下列方程: (1)x2-49=0   (2)3x2-7x=0 (3)(2x-1)2=9

(4)x2+3x-4=0 (5)(x+4)2=5(x+4)    (6)x2+4x=2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知四邊形ABCD中,EF分別是AB、AD邊上的點,DECF交于點G.

(1)如圖1,若四邊形ABCD是正方形,且DECF,求證:DE=CF;

(2)如圖2,若四邊形ABCD是矩形,且DECF,求證:;

(3)如圖3,若四邊形ABCD是平行四邊形,當∠B=EGF時,第(2)問的結論是否成立?若成立給予證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中(AD>AB),點EBC上一點,且DE=DA,AF⊥DE,垂足為點F,在下列結論中,不一定正確的是(  )

A. △AFD≌△DCE B. AF=AD C. AB=AF D. BE=AD﹣DF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列調查方式正確的是(

A.為了解七(1)班同學的課外興趣愛好情況,采用抽樣調查的方式.

B.為了解全區(qū)七年級學生對足球的愛好情況,采用抽樣調查的方式.

C.為了解新生產的型藥的藥效情況,采用全面調查的方式.

D.為了解深圳市民的業(yè)余生活情況,采用全面調查的方式.

查看答案和解析>>

同步練習冊答案