【題目】如圖,∠BAC=∠DAF=90°,AB=AC,AD=AF,點(diǎn)D、E為BC邊上的兩點(diǎn),且∠DAE=45°,連接EF、BF,則下列結(jié)論:①△AED≌△AEF ②△ABE∽△ACD,③BE+DC>DE④BE2+DC2=DE2,其中正確的有( )個(gè)
A.1 B.2 C.3 D.4
【答案】C.
【解析】
試題解析:①∵∠DAF=90°,∠DAE=45°,
∴∠FAE=∠DAF-∠DAE=45°.
在△AED與△AEF中,
,
∴△AED≌△AEF(SAS),①正確;
②∵∠BAC=90°,AB=AC,
∴∠ABE=∠C=45°.
∵點(diǎn)D、E為BC邊上的兩點(diǎn),∠DAE=45°,
∴AD與AE不一定相等,∠AED與∠ADE不一定相等,
∵∠AED=45°+∠BAE,∠ADE=45°+∠CAD,
∴∠BAE與∠CAD不一定相等,
∴△ABE與△ACD不一定相似,②錯(cuò)誤;
③∵∠BAC=∠DAF=90°,
∴∠BAC-∠BAD=∠DAF-∠BAD,即∠CAD=∠BAF.
在△ACD與△ABF中,
,
∴△ACD≌△ABF(SAS),
∴CD=BF,
由①知△AED≌△AEF,
∴DE=EF.
在△BEF中,∵BE+BF>EF,
∴BE+DC>DE,③正確;
④由③知△ACD≌△ABF,
∴∠C=∠ABF=45°,
∵∠ABE=45°,
∴∠EBF=∠ABE+∠ABF=90°.
在Rt△BEF中,由勾股定理,得BE2+BF2=EF2,
∵BF=DC,EF=DE,
∴BE2+DC2=DE2,④正確.
故選C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線l1:y=x-3與x軸,y軸分別交于點(diǎn)A和點(diǎn)B.
(1)求點(diǎn)A和點(diǎn)B的坐標(biāo);
(2)將直線l1向上平移6個(gè)單位后得到直線l2,求直線l2的函數(shù)解析式;
(3)設(shè)直線l2與x軸的交點(diǎn)為M,則△MAB的面積是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】剪紙是中國傳統(tǒng)的民間藝術(shù),它畫面精美,風(fēng)格獨(dú)特,深受大家喜愛,現(xiàn)有三張不透明的卡片,其中兩張卡片的正面圖案為“金魚”,另外一張卡片的正面圖案為“蝴蝶”,卡片除正面剪紙圖案不同外,其余均相同.將這三張卡片背面向上洗勻從中隨機(jī)抽取一張,記錄圖案后放回,重新洗勻后再從中隨機(jī)抽取一張.請用畫樹狀圖(或列表)的方法,求抽出的兩張卡片上的圖案都是“金魚”的概率.(圖案為“金魚”的兩張卡片分別記為A1、A2,圖案為“蝴蝶”的卡片記為B)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一個(gè)轉(zhuǎn)盤(如圖所示),被分成6個(gè)相等的扇形,顏色分為紅、綠、黃三種,指針的位置固定,轉(zhuǎn)動(dòng)轉(zhuǎn)盤后任其自由停止,其中的某個(gè)扇形會恰好停在指針?biāo)傅奈恢茫ㄖ羔樦赶騼蓚(gè)扇形的交線時(shí),重新轉(zhuǎn)動(dòng)).下列事件:①指針指向紅色;②指針指向綠色;③指針指向黃色;④指針不指向黃色.估計(jì)各事件的可能性大小,完成下列問題:
(1)可能性最大和最小的事件分別是哪個(gè)?(填寫序號)
(2)將這些事件的序號按發(fā)生的可能性從小到大的順序排列: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角坐標(biāo)系中的網(wǎng)格由單位正方形構(gòu)成,△ABC中,A點(diǎn)坐標(biāo)為(2,3),B點(diǎn)坐標(biāo)為(-2,0),C點(diǎn)坐標(biāo)為(0,-1).
(1)AC的長為______;
(2)求證:AC⊥BC;
(3)若以A、B、C及點(diǎn)D為頂點(diǎn)的四邊形為平行四邊形ABCD,畫出平行四邊形ABCD,并寫出D點(diǎn)的坐標(biāo)______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】超速行駛是引發(fā)交通事故的主要原因之一.上周末,小明和三位同學(xué)嘗試用自己所學(xué)的知識檢測車速.如圖,觀測點(diǎn)設(shè)在A處,離益陽大道的距離(AC)為30米.這時(shí),一輛小轎車由西向東勻速行駛,測得此車從B處行駛到C處所用的時(shí)間為8秒,∠BAC=75°.
(1)求B、C兩點(diǎn)的距離;
(2)請判斷此車是否超過了益陽大道60千米/小時(shí)的限制速度?
(計(jì)算時(shí)距離精確到1米,參考數(shù)據(jù):sin75°≈0.9659,cos75°≈0.2588,tan75°≈3.732,,60千米/小時(shí)≈16.7米/秒)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圖1是一塊邊長為1,面積記為S1的正三角形紙板,沿圖1的底邊剪去一塊邊長為的正三角形紙板后得到圖2,然后沿同一底邊依次剪去一塊更小的正三角形紙板(即其邊長為前一塊被剪掉正三角形紙板邊長的)后,得圖3,圖4,…,記第n(n≥3) 塊紙板的面積為Sn,則S2018-S2019 =( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=-x2+bx+c與直線y=-x的交點(diǎn)A、B的橫坐標(biāo)分別為2和.點(diǎn)P是直線上方拋物線上的一動(dòng)點(diǎn),過點(diǎn)P作PD⊥AB于點(diǎn)D,作PE⊥x軸交AB于點(diǎn)E.
(1)直接寫出點(diǎn)A、B的坐標(biāo);
(2)求拋物線的關(guān)系式;
(3)判斷△OBC形狀,并說明理由;
(4)設(shè)點(diǎn)P的橫坐標(biāo)為n,線段PD的長為y,求y關(guān)于n的函數(shù)關(guān)系式;
(5)定義符號min{a,b)}的含義為:當(dāng)a≥b時(shí),min{a,b}=b;當(dāng)a<b時(shí),min{a,b}=a.如min{2,0}=0,min{-3,4}=-3.直接寫出min{-x2+bx+c,-x}的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=x2+2x-3與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,對稱軸為直線l,點(diǎn)D(-4,n)在拋物線上.
(1)求直線CD的解析式;
(2)E為直線CD下方拋物線上的一點(diǎn),連接EC,ED,當(dāng)△ECD的面積最大時(shí),在直線l上取一點(diǎn)M,過M作y軸的垂線,垂足為點(diǎn)N,連接EM,BN,若EM=BN時(shí),求EM+MN+BN的值.
(3)將拋物線y=x2+2x-3沿x軸正方向平移得到新拋物線y′,y′經(jīng)過原點(diǎn)O,y′與x軸的另一個(gè)交點(diǎn)為F,設(shè)P是拋物線y′上任意一點(diǎn),點(diǎn)Q在直線l上,△PFQ能否成為以點(diǎn)P為直角頂點(diǎn)的等腰直角三角形?若能,直接寫出點(diǎn)P的坐標(biāo),若不能,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com