【題目】如圖1,BD是矩形ABCD的對角線,,.將沿射線BD方向平移到的位置,連接,,,,如圖2.
(1)求證:四邊形是平行四邊形;
(2)當運動到什么位置時,四邊形是菱形,請說明理由;
(3)在(2)的條件下,將四邊形沿它的兩條對角線剪開,用得到的四個三角形拼成與其面積相等的矩形,直接寫出所有可能拼成的矩形周長.
【答案】(1)見解析;(2)當運動到BD中點時,四邊形是菱形,理由見解析;(3)或.
【解析】
(1)根據(jù)平行四邊形的判定定理一組對邊相等一組對角相等,即可解答
(2)有一組鄰邊相等的平行四邊形是菱形,據(jù)此進行證明即可;
(3)根據(jù)兩種不同的拼法,分別求得可能拼成的矩形周長.
(1)∵BD是矩形ABCD的對角線,,
∴,
由平移可得,,
,
∴
∴四邊形是平行四邊形,
(2)當運動到BD中點時,四邊形是菱形
理由:∵為BD中點,
∴中,,
又∵,
∴是等邊三角形,
∴,
∴四邊形是菱形;
(3)將四邊形ABC′D′沿它的兩條對角線剪開,用得到的四個三角形拼成與其面積相等的矩形如下:
∴矩形周長為或.
科目:初中數(shù)學 來源: 題型:
【題目】某校八年級的體育老師為了解本年級學生對球類運動的愛好情況,抽取了該年級部分學生對籃球、足球、排球、乒乓球的愛好情況進行了調(diào)查,并將調(diào)查結(jié)果繪制成如圖所示的兩幅不完整的統(tǒng)計圖[說明:每位學生只選一種自己最喜歡的一種球類)請根據(jù)這兩幅圖形解答下列問題:
(1)此次被調(diào)查的學生總?cè)藬?shù)為 人.
(2)將條形統(tǒng)計圖補充完整,并求出乒乓球在扇形中所占的圓心角的度數(shù);
(3)已知該校有760名學生,請你根據(jù)調(diào)查結(jié)果估計愛好足球和排球的學生共有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】九 (1)班48名學生參加學校舉行的“珍惜生命,遠離毒品”知識競賽初賽,賽后,班長對成績進行分析,制作如下的頻數(shù)分布表和頻數(shù)分布直方圖(未完成).余下8名學生成績尚未統(tǒng)計,這8名學生成績?nèi)缦拢?/span>60,90,63,99,67,99,99,68.
頻數(shù)分布表
分數(shù)段 | 頻數(shù)(人數(shù)) |
60≤x<70 | a |
70≤x<80 | 16 |
80≤x<90 | 24 |
90≤x<100 | b |
請解答下列問題:
(1)完成頻數(shù)分布表,a= ,b= .
(2)補全頻數(shù)分布直方圖;
(3)全校共有600名學生參加初賽,估計該校成績90≤x<100范圍內(nèi)的學生有多少人?
(4)九 (1)班甲、乙、丙三位同學的成績并列第一,現(xiàn)選兩人參加決賽,求恰好選中甲、乙兩位同學的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠AOB的邊OA上有一動點P,從距離O點18cm的點M處出發(fā),沿線段MO,射線OB運動,速度為2cm/s;動點Q從點O出發(fā),沿射線OB運動,速度為1cm/s.P、Q同時出發(fā),設運動時間是t(s).
(1)當點P在MO上運動時,PO= cm (用含t的代數(shù)式表示);
(2)當點P在MO上運動時,t為何值,能使OP=OQ?
(3)若點Q運動到距離O點16cm的點N處停止,在點Q停止運動前,點P能否追上點Q?如果能,求出t的值;如果不能,請說出理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點O是△ABC內(nèi)一點,連結(jié)OB、OC,并將AB、OB、OC、AC的中點D、E、F、G依次連結(jié),得到四邊形DEFG.
(1)求證:四邊形DEFG是平行四邊形;
(2)若M為EF的中點,OM=3,∠OBC和∠OCB互余,求DG的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某同學把一塊三角形的玻璃打碎成了三塊,現(xiàn)在要到玻璃店去配一塊完全一樣的玻璃,最省事的辦法是( )
A. 帶①去B. 帶②去C. 帶③去D. 帶①和②去
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店購進A、B兩種商品共100件,花費3100元,其進價和售價如下表;
(1)A、B兩種商品分別購進多少件?
(2)兩種商品售完后共獲取利潤多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在平面直角坐標系xOy中,直線AB與x軸交于點A(-2,0),與反比例函數(shù)在第一象限內(nèi)的圖象的交于點B(2,n),連結(jié)BO,若S△AOB=4.
(1)求該反比例函數(shù)的解析式和直線AB的解析式;
(2)若直線AB與y軸的交點為C,求△OCB的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】反比例函數(shù)y=(1≤x≤8)的圖象記為曲線C1,將C1沿y軸翻折,得到曲線C2,直線y=-x+b 與C1 ,C2一共只有兩個公共點,則b的取值范圍是______________________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com