【題目】某商店購進A、B兩種商品共100件,花費3100元,其進價和售價如下表;
(1)A、B兩種商品分別購進多少件?
(2)兩種商品售完后共獲取利潤多少元?
【答案】(1)40,60;(2)800.
【解析】
(1)設(shè)購進甲種商品x件,則購進乙種商品(100x)件,根據(jù)總價=單價×購進數(shù)量,即可得出關(guān)于x的一元一次方程,解之即可得出結(jié)論;
(2)根據(jù)總利潤=單件利潤×銷售數(shù)量,即可求出兩種商品售完后獲取的利潤.
解:(1)設(shè)購進甲種商品x件,則購進乙種商品(100x)件,
根據(jù)題意得:25x+35(100x)=3100,
解得:x=40,
∴100x=10040=60.
答:購進甲商品40件,乙商品60件;
(2)40×(3025)+60×(4535)=800(元).
答:兩種商品售完后獲取利潤是800元.
科目:初中數(shù)學 來源: 題型:
【題目】某市為鼓勵市民節(jié)約用水,自來水公司按分段收費標準收費,如圖反映的是每月水費(元)與用水量(噸)之間的函數(shù)關(guān)系.
(1)當用水量超過10噸時,求關(guān)于的函數(shù)解析式(不必寫自變量取值范圍);
(2)按上述分段收費標準小聰家三、四月份分別交水費38元和27元,問四月份比三月份節(jié)約用水多少噸?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某淘寶店家為迎接“雙十一”搶購活動,在甲批發(fā)市場以每件a元的價格進了40件童裝,又在乙批發(fā)市場以每件b元(a>b)的價格進了同樣的60件童裝.如果店家以每件元的價格賣出這款童裝,賣完后,這家商店( 。
A.盈利了B.虧損了
C.不贏不虧D.盈虧不能確定
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,BD是矩形ABCD的對角線,,.將沿射線BD方向平移到的位置,連接,,,,如圖2.
(1)求證:四邊形是平行四邊形;
(2)當運動到什么位置時,四邊形是菱形,請說明理由;
(3)在(2)的條件下,將四邊形沿它的兩條對角線剪開,用得到的四個三角形拼成與其面積相等的矩形,直接寫出所有可能拼成的矩形周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在生活中,人們經(jīng)常通過一些標志性建筑確定位置,在數(shù)學中往往也是這樣.
(1)將正整數(shù)如圖1的方式進行排列:
小明同學通過仔細觀察,發(fā)現(xiàn)每一行第一列的數(shù)字有一定的規(guī)律,所以每一行第一列的數(shù)字可以作為標志數(shù),于是他認為第七行第一列的數(shù)字是 ,第7行、第5列的數(shù)字是 .
(2)方法應(yīng)用
觀察下面一列數(shù):1,﹣2,3,﹣4,5,﹣6,7,…并將這列數(shù)按照如圖2方式進行排列:
按照上述方式排列下去,
問題1:第10行從左邊數(shù)第9個數(shù)是 ;
問題2:第n行有 個數(shù);(用含n的代數(shù)式表示)
問題3:數(shù)字2019在第 行,從左邊數(shù)第 個數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在△ABC中,∠BAC=60°,點0是△ABC內(nèi)一點,△AB0△ACD,連接OD.
(1)求證△AOD為等邊三角形。
(2)如圖2,連接OC,若∠BOC=130°,∠AOB=.
①求∠OCD的度數(shù)
②當△OCD是等腰三角形時,求∠的度數(shù)
、
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校準備開展“陽光體育活動”,決定開設(shè)以下體育活動項目:足球、乒乓球、籃球和羽毛球,要求每位學生必須且只能選擇一項,為了解選擇各種體育活動項目的學生人數(shù),隨機抽取了部分學生進行調(diào)查,并將通過獲得的數(shù)據(jù)進行整理,繪制出以下兩幅不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖回答問題:
(1)這次活動一共調(diào)查了名學生;
(2)補全條形統(tǒng)計圖;
(3)在扇形統(tǒng)計圖中,選擇籃球項目的人數(shù)所在扇形的圓心角等于多少度;
(4)若該學校有1500人,請你估計該學校選擇足球項目的學生人數(shù)約是多少人.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖,圖象過點(﹣1,0),對稱軸為直線x=2,下列結(jié)論:
①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④當x>﹣1時,y的值隨x值的增大而增大.
其中正確的結(jié)論有( )
A.1個 B.2個 C.3個 D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知C為線段AB的中點,E為線段AB上的點,點D為線段AE的中點.
(1)若線段AB=a,CE=b,|a﹣17|+(b﹣5.5)2=0,求線段AB、CE的長;
(2)如圖1,在(1)的條件下,求線段DE的長;
(3)如圖2,若AB=20,AD=2BE,求線段CE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com