【題目】如圖,直線y=-x+b(b>0)與x軸、y軸分別交于點(diǎn)A、B,與雙曲線y=-(x<0)交于點(diǎn)C.
(1)若△AOB的面積為2,求b的值;
(2)連接OC,若△AOC的面積為2,求b的值.
【答案】(1);(2)1.
【解析】
(1)由點(diǎn)A、B在直線y=﹣x+b上,可求出A、B兩點(diǎn)的坐標(biāo),再根據(jù)三角形面積即可求出b的值.(2)過C作CH⊥AO于H,則S△CHO=|4|=2,由△AOC的面積為2可知OH=AO=2b,根據(jù)點(diǎn)C在直線上即可求出b值.
(1)∵y=﹣x+b,令x=0,則y=b;令y=0,則x=2b,
∴A(2b,0),B(0,b),
∴S△AOB=OAOB=b×2b=2,
∴b2=2,
又∵b>0,
∴b=;
(2)如圖,過C作CH⊥AO于H,
∵S△CHO=|4|=2,△AOC的面積為2,
∴OH=AO=2b,
設(shè)C(﹣2b,),且點(diǎn)C在直線上,
∴﹣×(﹣2b)+b=,
∴b2=1,
又∵b>0,
∴b=1.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一次夏令營活動(dòng)中,小明從營地A出發(fā),沿北偏東60°方向走了m 到達(dá)點(diǎn)B,然后再沿北偏西30°方向走了50m到達(dá)目的地C。
(1)求A、C兩點(diǎn)之間的距離;
(2)確定目的地C在營地A的北偏東多少度方向。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】水龍頭關(guān)閉不緊會(huì)造成滴水,小明用可以顯示水量的容器做圖①所示的試驗(yàn),并根據(jù)試驗(yàn)數(shù)據(jù)繪制出圖②所示的容器內(nèi)盛水量W(L)與滴水時(shí)間t(h)的函數(shù)關(guān)系圖象,請結(jié)合圖象解答下列問題:
(1)容器內(nèi)原有水多少?
(2)求W與t之間的函數(shù)關(guān)系式,并計(jì)算在這種滴水狀態(tài)下一天的滴水量是多少升?
圖 ① 圖②
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB=4cm,AC=BD=3cm.∠CAB=∠DBA=60°,點(diǎn)P在線段AB上以1cm/s的速度由點(diǎn)A向點(diǎn)B運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段BD上由點(diǎn)B向點(diǎn)D運(yùn)動(dòng).它們運(yùn)動(dòng)的時(shí)間為t(s),則點(diǎn)Q的運(yùn)動(dòng)速度為 cm/s,使得A、C、P三點(diǎn)構(gòu)成的三角形與B、P、Q三點(diǎn)構(gòu)成的三角形全等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AE=CF,∠A=∠C,那么添加下列一個(gè)條件后,仍無法判定△ADF≌△CBE的是( 。
A. ∠D=∠B B. AD=CB C. BE=DF D. ∠AFD=∠CEB
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=6,BC=6,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒 個(gè)單位長度的速度沿線段AD運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)D出發(fā),以每秒2個(gè)單位長度的速度沿折線段D﹣O﹣C運(yùn)動(dòng),已知P、Q同時(shí)開始移動(dòng),當(dāng)動(dòng)點(diǎn)P到達(dá)D點(diǎn)時(shí),P、Q同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)當(dāng)t=1秒時(shí),求動(dòng)點(diǎn)P、Q之間的距離;
(2)若動(dòng)點(diǎn)P、Q之間的距離為4個(gè)單位長度,求t的值;
(3)若線段PQ的中點(diǎn)為M,在整個(gè)運(yùn)動(dòng)過程中;直接寫出點(diǎn)M運(yùn)動(dòng)路徑的長度為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊三角形ABC中,AD⊥BC于點(diǎn)D,BD=2,以AD為一邊向右作等邊三角形ADE.
(1)求△ABC的周長;
(2)判斷AC、DE的位置關(guān)系,并給出證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,延長至,與的角平分線相交于點(diǎn),與的角平分線相交于點(diǎn),依次類推,與的平分線相交于點(diǎn),則的度數(shù)為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解:
如圖①,在△ABC的邊AB上取一點(diǎn)P,連接CP,可以把△ABC分成兩個(gè)三角形,如果這兩個(gè)三角形都是等腰三角形,我們就稱點(diǎn)P是△ABC的邊AB上的和諧點(diǎn).
解決問題:
(1)如圖②,在△ABC中,∠ACB=90°,試找出邊AB上的和諧點(diǎn)P,并說明理由:
(2)己知∠A=36°,△ABC的頂點(diǎn)B在射線l上(如圖③),點(diǎn)P是邊AB上的和諧點(diǎn),請?jiān)趫D③及備用圖中畫出所有符合條件的點(diǎn)B,用同一標(biāo)記標(biāo)上相等的邊,并寫出相應(yīng)的∠B的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com