【題目】墾利區(qū)在進行五城同創(chuàng)的過程中,決定購買A,B兩種樹對某路段進行綠化改造,若購買A種樹1棵,B種樹3棵,需要2250元;購買A種樹2棵,B種樹5棵,需要3900元.

1)求購買A,B兩種樹每棵各需多少元?

2)考慮到綠化效果,購進A種樹不能少于48棵,且用于購買這兩種樹的資金不低于52500元.若購進這兩種樹共100棵.問有哪幾種購買方案?

【答案】1)購買A種樹每棵需要450元,B種樹每棵需要600元;(2)有三種購買方案:A種樹購買48棵,B種樹購買52棵;A種樹購買49棵,B種樹購買51棵;A種樹購買50棵,B種樹購買50

【解析】

1)本題有兩個相等關系:購買1A種樹的錢數(shù)+3B種樹的錢數(shù)=2250元;購買2A種樹的錢數(shù)+5B種樹的錢數(shù)=3900元,據(jù)此設未知數(shù)列方程組解答即可;

2)設購進A種樹m棵,根據(jù)購進A種樹不能少于48棵,且用于購買這兩種樹的資金不低于52500元即可列出關于m的不等式組,解不等式組即可求出m的取值范圍,然后結合m為整數(shù)即可得出結論.

解:(1)設購買A種樹每棵需要x元,B種樹每棵需要y元,

依題意,得:, 解得:

答:購買A種樹每棵需要450元,B種樹每棵需要600元.

2)設購進A種樹m棵,則購進B種樹(100m)棵,

依題意,得:,

解得:48≤m≤50

m為整數(shù),∴m48,49,50

m48時,100m1004852;

m49時,100m1004951;

m50時,100m1005050

答:有三種購買方案:A種樹購買48棵,B種樹購買52棵;A種樹購買49棵,B種樹購買51棵;A種樹購買50棵,B種樹購買50棵.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線yax2+bx+2a0)與x軸交于AB兩點(點A在點B的左側),與y軸交于點C,拋物線經(jīng)過點D(﹣2,﹣3)和點E32),點P是第一象限拋物線上的一個動點.

1)求直線DE和拋物線的表達式;

2)在y軸上取點F0,1),連接PF,PB,當四邊形OBPF的面積是7時,求點P的坐標;

3)在(2)的條件下,當點P在拋物線對稱軸的右側時,直線DE上存在兩點M,N(點M在點N的上方),且MN2,動點Q從點P出發(fā),沿PMNA的路線運動到終點A,當點Q的運動路程最短時,請直接寫出此時點N的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,反比例函數(shù)與一次函數(shù)在第三象限交于點.的坐標為(3,0),軸左側的一點.若以為頂點的四邊形為平行四邊形.則點的坐標為_____________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】徐州至北京的高鐵里程約為700km,甲、乙兩人從徐州出發(fā),分別乘坐徐州號高鐵A復興號高鐵B前往北京.已知A車的平均速度比B車的平均速度慢80km/h,A車的行駛時間比B車的行駛時間多40%,兩車的行駛時間分別為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,菱形OABC的頂點Ax軸上,頂點B的坐標為(8,4),點P是對角線OB上一個動點,點D的坐標為(0,﹣2),當DPAP之和最小時,點P的坐標為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtABC中,∠BAC=90°,AB=3,AC=6,點D,E分別是邊BC,AC上的動點,則DA+DE的最小值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A、B是反比例函數(shù)yk0)圖象上的兩點,延長線段ABy軸于點C,且點B為線段AC中點,過點AADx軸于點D,點E為線段OD的三等分點,且OEDE.連接AEBE,若SABE7,則k的值為( )

A.12B.10C.9D.6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小穎綜合與實踐小組學習了三角函數(shù)后,開展了測量本校旗桿高度的實踐活動.他們制訂了測量方案,并利用課余時間完成了實地測量.他們在該旗桿底部所在的平地上,選取兩個不同測點,分別測量了該旗桿頂端的仰角以及這兩個測點之間的距離.為了減小測量誤差,小組在測量仰角的度數(shù)以及兩個測點之間的距離時,都分別測量了兩次并取它們的平均值作為測量結果,如表是不完整測量數(shù)據(jù).

課題

測量旗桿的高度

成員

組長:小穎,組員:小明,小剛,小英

測量工具

測量角度的儀器,皮尺等

測量示意圖

說明:

線段GH表示學校旗桿,測量角度的儀器的高度ACBD1.62m,測點A,BH在同一水平直線上,A,B之間的距離可以直接測得,且點G,HA,BC,D都在同一豎直平面內,點C,D,E在同一條直線上,點EGH上.

測量數(shù)據(jù)

測量項目

第一次

第二次

平均值

GCE的度數(shù)

30.6°

31.4°

31°

GDE的度數(shù)

36.8°

37.2°

37°

A,B之間的距離

10.1m

10.5m

   m

1)任務一:完成表格中兩次測點A,B之間的距離的平均值.

2)任務二:根據(jù)以上測量結果,請你幫助該“綜合與實踐”小組求出學校旗桿GH的高度.(精確到0.1m)(參考數(shù)據(jù):sin31°0.51cos31°0.86,tan31°0.60sin37°0.60,cos37°0.80tan37°0.75

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題發(fā)現(xiàn):

1)如圖1,在RtABC中,∠BAC=30°,∠ABC90°,將線段AC繞點A逆時針旋轉,旋轉角α=2∠BAC, BCD的度數(shù)是  ;線段BD,AC之間的數(shù)量關系是  

類比探究:

2)在RtABC中,∠BAC=45°,∠ABC90°,將線段AC繞點A逆時針旋轉,旋轉角α=2∠BAC,請問(1)中的結論還成立嗎?;

拓展延伸:

3)如圖3,在RtABC中,AB2AC4,∠BDC90°,若點P滿足PBPC,∠BPC90°,請直接寫出線段AP的長度.

查看答案和解析>>

同步練習冊答案