【題目】墾利區(qū)在進行“五城同創(chuàng)”的過程中,決定購買A,B兩種樹對某路段進行綠化改造,若購買A種樹1棵,B種樹3棵,需要2250元;購買A種樹2棵,B種樹5棵,需要3900元.
(1)求購買A,B兩種樹每棵各需多少元?
(2)考慮到綠化效果,購進A種樹不能少于48棵,且用于購買這兩種樹的資金不低于52500元.若購進這兩種樹共100棵.問有哪幾種購買方案?
【答案】(1)購買A種樹每棵需要450元,B種樹每棵需要600元;(2)有三種購買方案:A種樹購買48棵,B種樹購買52棵;A種樹購買49棵,B種樹購買51棵;A種樹購買50棵,B種樹購買50棵
【解析】
(1)本題有兩個相等關系:購買1棵A種樹的錢數(shù)+3棵B種樹的錢數(shù)=2250元;購買2棵A種樹的錢數(shù)+5棵B種樹的錢數(shù)=3900元,據(jù)此設未知數(shù)列方程組解答即可;
(2)設購進A種樹m棵,根據(jù)購進A種樹不能少于48棵,且用于購買這兩種樹的資金不低于52500元即可列出關于m的不等式組,解不等式組即可求出m的取值范圍,然后結合m為整數(shù)即可得出結論.
解:(1)設購買A種樹每棵需要x元,B種樹每棵需要y元,
依題意,得:, 解得:.
答:購買A種樹每棵需要450元,B種樹每棵需要600元.
(2)設購進A種樹m棵,則購進B種樹(100﹣m)棵,
依題意,得:,
解得:48≤m≤50.
∵m為整數(shù),∴m為48,49,50.
當m=48時,100﹣m=100﹣48=52;
當m=49時,100﹣m=100﹣49=51;
當m=50時,100﹣m=100﹣50=50.
答:有三種購買方案:A種樹購買48棵,B種樹購買52棵;A種樹購買49棵,B種樹購買51棵;A種樹購買50棵,B種樹購買50棵.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+2(a≠0)與x軸交于A,B兩點(點A在點B的左側),與y軸交于點C,拋物線經(jīng)過點D(﹣2,﹣3)和點E(3,2),點P是第一象限拋物線上的一個動點.
(1)求直線DE和拋物線的表達式;
(2)在y軸上取點F(0,1),連接PF,PB,當四邊形OBPF的面積是7時,求點P的坐標;
(3)在(2)的條件下,當點P在拋物線對稱軸的右側時,直線DE上存在兩點M,N(點M在點N的上方),且MN=2,動點Q從點P出發(fā),沿P→M→N→A的路線運動到終點A,當點Q的運動路程最短時,請直接寫出此時點N的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,反比例函數(shù)與一次函數(shù)在第三象限交于點.點的坐標為(一3,0),點是軸左側的一點.若以為頂點的四邊形為平行四邊形.則點的坐標為_____________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】徐州至北京的高鐵里程約為700km,甲、乙兩人從徐州出發(fā),分別乘坐“徐州號”高鐵A與“復興號”高鐵B前往北京.已知A車的平均速度比B車的平均速度慢80km/h,A車的行駛時間比B車的行駛時間多40%,兩車的行駛時間分別為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,菱形OABC的頂點A在x軸上,頂點B的坐標為(8,4),點P是對角線OB上一個動點,點D的坐標為(0,﹣2),當DP與AP之和最小時,點P的坐標為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,∠BAC=90°,AB=3,AC=6,點D,E分別是邊BC,AC上的動點,則DA+DE的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A、B是反比例函數(shù)y=(k≠0)圖象上的兩點,延長線段AB交y軸于點C,且點B為線段AC中點,過點A作AD⊥x軸于點D,點E為線段OD的三等分點,且OE<DE.連接AE、BE,若S△ABE=7,則k的值為( )
A.﹣12B.﹣10C.﹣9D.﹣6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小穎“綜合與實踐”小組學習了三角函數(shù)后,開展了測量本校旗桿高度的實踐活動.他們制訂了測量方案,并利用課余時間完成了實地測量.他們在該旗桿底部所在的平地上,選取兩個不同測點,分別測量了該旗桿頂端的仰角以及這兩個測點之間的距離.為了減小測量誤差,小組在測量仰角的度數(shù)以及兩個測點之間的距離時,都分別測量了兩次并取它們的平均值作為測量結果,如表是不完整測量數(shù)據(jù).
課題 | 測量旗桿的高度 | |||
成員 | 組長:小穎,組員:小明,小剛,小英 | |||
測量工具 | 測量角度的儀器,皮尺等 | |||
測量示意圖 | 說明: 線段GH表示學校旗桿,測量角度的儀器的高度AC=BD=1.62m,測點A,B與H在同一水平直線上,A,B之間的距離可以直接測得,且點G,H,A,B,C,D都在同一豎直平面內,點C,D,E在同一條直線上,點E在GH上. | |||
測量數(shù)據(jù) | 測量項目 | 第一次 | 第二次 | 平均值 |
∠GCE的度數(shù) | 30.6° | 31.4° | 31° | |
∠GDE的度數(shù) | 36.8° | 37.2° | 37° | |
A,B之間的距離 | 10.1m | 10.5m | m | |
… | … |
(1)任務一:完成表格中兩次測點A,B之間的距離的平均值.
(2)任務二:根據(jù)以上測量結果,請你幫助該“綜合與實踐”小組求出學校旗桿GH的高度.(精確到0.1m)(參考數(shù)據(jù):sin31°≈0.51,cos31°≈0.86,tan31°≈0.60,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題發(fā)現(xiàn):
(1)如圖1,在Rt△ABC中,∠BAC=30°,∠ABC=90°,將線段AC繞點A逆時針旋轉,旋轉角α=2∠BAC, ∠BCD的度數(shù)是 ;線段BD,AC之間的數(shù)量關系是 .
類比探究:
(2)在Rt△ABC中,∠BAC=45°,∠ABC=90°,將線段AC繞點A逆時針旋轉,旋轉角α=2∠BAC,請問(1)中的結論還成立嗎?;
拓展延伸:
(3)如圖3,在Rt△ABC中,AB=2,AC=4,∠BDC=90°,若點P滿足PB=PC,∠BPC=90°,請直接寫出線段AP的長度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com