【題目】為了解我市市區(qū)初中生“綠色出行”方式的情況,某初中數(shù)學(xué)興趣小組以問卷調(diào)查的形式,隨機(jī)調(diào)查了本校部分學(xué)生上下學(xué)的主要出行方式,并將調(diào)查結(jié)果繪制了如圖所示的兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中提供的信息解答以下問題:
種類 | |||||
出行方式 | 步行 | 公交車 | 自行車 | 私家車 | 出租車 |
(1)參與本次問卷調(diào)查的學(xué)生共有_________人,其中選擇類的人數(shù)所占的百分比為____________.
(2)請(qǐng)通過計(jì)算補(bǔ)全條形統(tǒng)計(jì)圖,并計(jì)算扇形統(tǒng)計(jì)圖中類所對(duì)應(yīng)扇形的圓心角的度數(shù).
(3)我市市區(qū)初中生每天約人出行,若將,,這三類出行方式均視為“綠色出行”方式,請(qǐng)估計(jì)我市市區(qū)初中生選取“綠色出行”方式的人數(shù).
【答案】(1)900,23%;(2)見解析,144°;(3)我市市區(qū)初中生選取“綠色出行”方式的人數(shù)為13110人
【解析】
(1)根據(jù)A類的人數(shù)和所占的百分比求出總?cè)藬?shù),利用D類的人數(shù)除以總?cè)藬?shù)可以得出D類的人數(shù)所占的百分比;
(2)根據(jù)總?cè)藬?shù)乘以C類的人數(shù)所占的百分比可以得出C類的人數(shù),從而得出B類的人數(shù),即可補(bǔ)全條形統(tǒng)計(jì)圖;再利用B類的人數(shù)除以總?cè)藬?shù)可以得出B類的人數(shù)所占的百分比,進(jìn)而可以求出B類所對(duì)應(yīng)的圓心角的度數(shù);
(3)利用樣本估計(jì)總體的思想解決問題即可.
解:(1)180÷20%=900(人),207÷900=23%,
故答案為:900;23%;
(2)C類的人數(shù):900×9%=81(人),B類的人數(shù):900-180-81-207-72=360(人),
補(bǔ)全統(tǒng)計(jì)圖如下:
B類的人數(shù)所占百分比為:100%=40%,
B類的人數(shù)所對(duì)應(yīng)扇形的圓心角的度數(shù)為:360°×40%=144°;
(3)根據(jù)題意得:19000×(20%+40%+9%)=13110(人),
答:我市市區(qū)初中生選取“綠色出行”方式的人數(shù)約為13110人.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是邊長(zhǎng)為2的菱形,E,F分別是AB,AD的中點(diǎn),連接EF,EC,將△FAE繞點(diǎn)F旋轉(zhuǎn)180°得到△FDM.
(1)補(bǔ)全圖形并證明:EF⊥AC;
(2)若∠B=60°,求△EMC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一組正方形按如圖所示的方式放置,其中頂點(diǎn)B1在y軸上,頂點(diǎn)C1、E1、E2、C2、E3、E4、C3…在x軸上,已知正方形A1B1C1D1的邊長(zhǎng)為1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…則正方形A2017B2017C2017D2017的邊長(zhǎng)是( )
A. ()2016 B. ()2017 C. ()2016 D. ()2017
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,六邊ABCDEF中,AB平行且等于ED,AF平行且等于CD,BC平行且等于FE,對(duì)角線FD⊥BD.已知FD=24,BD=18.則六邊形ABCDEF的面積是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A(﹣2,1),B(1,4),若反比例函數(shù)y=與線段AB有公共點(diǎn)時(shí),k的取值范圍是( )
A. ﹣≤k<0或0<k≤4 B. k≤﹣2或k≥4
C. ﹣2≤k<0或k≥4 D. ﹣2≤k<0或0<k≤4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知的三個(gè)頂點(diǎn)的坐標(biāo)分別為、、.
(1)請(qǐng)直接寫出點(diǎn)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo);
(2)將繞坐標(biāo)原點(diǎn)逆時(shí)針旋轉(zhuǎn)得到,畫出,直接寫出點(diǎn)、的對(duì)應(yīng)點(diǎn)的點(diǎn)、坐標(biāo);
(3)請(qǐng)直接寫出:以、、為頂點(diǎn)的平行四邊形的第四個(gè)頂點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“學(xué)科能力”展示活動(dòng)中,某縣教育局決定在甲、乙兩校舉行“學(xué)科能力”比賽活動(dòng),規(guī)定甲、乙兩學(xué)校選派相同人數(shù)的選手參加,比賽結(jié)束后,發(fā)現(xiàn)參賽選手的成績(jī)是70分、80分、90分、l00分這四種成績(jī)中的一種,已知甲、乙兩校的選手獲得100分的人數(shù)相等.現(xiàn)根據(jù)甲、乙兩校選手的成績(jī),繪制成兩幅不完整統(tǒng)計(jì)圖如下:
(1)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(2)比賽結(jié)束后,教育局決定對(duì)甲、乙兩校獲得100分的選手進(jìn)行集中培訓(xùn),培訓(xùn)后,從中隨機(jī)選取兩位選手參加市里的決賽,請(qǐng)用列表法或畫樹狀圖的方法,求所選兩位選手來自同一學(xué)校的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,E是AD的中點(diǎn),延長(zhǎng)CE,BA交于點(diǎn)F,連接AC,DF.
(1)求證:四邊形ACDF是平行四邊形;
(2)當(dāng)CF平分∠BCD時(shí),寫出BC與CD的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB,CD交于點(diǎn)O,OE平分,OF是的角平分線.
(1)說明: ;
(2)若,求的度數(shù);
(3)若,求的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com