【題目】如圖,已知△ABC(網(wǎng)格中每個小正方形的邊長均為1).
(1)三個頂點(diǎn)坐標(biāo)分別為:A ,B ,C ;
(2)求三角形ABC的面積.
【答案】(1)(﹣1,4),(﹣4,﹣1),(1,1);(2)9.5
【解析】
(1)根據(jù)平面直角坐標(biāo)系即可寫出各個點(diǎn)的坐標(biāo);
(2)用一個正方形將△ABC框住,然后用正方形的面積減去3個直角三角形的面積即可求出結(jié)論.
解:(1)A點(diǎn)的坐標(biāo)是(﹣1,4),B點(diǎn)的坐標(biāo)是(﹣4,﹣1),C點(diǎn)的坐標(biāo)是(1,1),
故答案為:(﹣1,4),(﹣4,﹣1),(1,1);
(2)用一個正方形將△ABC框住,如圖所示
∴S△ABC=S正方形EFGB﹣S△BEA﹣S△AFC﹣S△BGC=5×5﹣﹣﹣=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將ABCD沿CE折疊,使點(diǎn)D落在BC邊上的F處,點(diǎn)E在AD上.
(1)求證:四邊形ABFE為平行四邊形;
(2)若AB=4,BC=6,求四邊形ABFE的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線y1=kx+1(k<0)與直線y2=mx(m>0)的交點(diǎn)坐標(biāo)為(,m),則不等式組mx﹣2<kx+1<mx的解集為( 。
A. x> B. <x< C. x< D. 0<x<
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線AB∥CD,F(xiàn)H平分∠EFD,F(xiàn)G⊥FH,∠AEF=62°,則∠GFC=_____度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,過點(diǎn)B(6,0)的直線AB與直線OA相交于點(diǎn)A(4,2),動點(diǎn)M沿路線O→A→C運(yùn)動.
(1)求直線AB的解析式.
(2)求△OAC的面積.
(3)當(dāng)△OMC的面積是△OAC的面積的時,求出這時點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD、DEFG都是正方形,連接AE,CG.
(1)求證:AE=CG;
(2)觀察圖形,猜想AE與CG之間的位置關(guān)系,并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,點(diǎn)A(0,0)、B(4,0)、C(0,4),在△ABC內(nèi)依次作等邊三角形,使一邊在x軸上,另一個頂點(diǎn)在BC邊上,作出的等邊三角形分別是第1個△AA1B1,第2個△B1A2B2,第3個△B2A3B3,…則第2017個等邊三角形的邊長等于( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知線段 AB 的兩個端點(diǎn)坐標(biāo)分別為A(a,5),B(8,b),且.
(1)求 a,b 的值;
(2)①連OA,OB,則SAOB = 平方單位;(說明:SAOB 表示三角形 AOB 的面積,下同.)
②點(diǎn)P從O點(diǎn)出發(fā)沿 y 軸負(fù)方向運(yùn)動,速度為每秒1個單位,連PA交OB于C,則運(yùn)動多少秒時,SABC=SPOC ;
(3)在(2)的條件下,過P作直線m∥AB,過B作直線 l∥x軸,直線m和直線l相交于點(diǎn)Q,請直接寫出點(diǎn)Q的坐標(biāo) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,DE⊥AB,BF⊥CD,垂足分別為E,F(xiàn).
(1)求證:△ADE≌△CBF;
(2)求證:四邊形BFDE為矩形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com