【題目】如圖,已知△ABC(網(wǎng)格中每個小正方形的邊長均為1).

1)三個頂點(diǎn)坐標(biāo)分別為:A   ,B   ,C   

2)求三角形ABC的面積.

【答案】1)(﹣1,4),(﹣4,﹣1),(1,1);(29.5

【解析】

1)根據(jù)平面直角坐標(biāo)系即可寫出各個點(diǎn)的坐標(biāo);

2)用一個正方形將△ABC框住,然后用正方形的面積減去3個直角三角形的面積即可求出結(jié)論.

解:(1A點(diǎn)的坐標(biāo)是(﹣1,4),B點(diǎn)的坐標(biāo)是(﹣4,﹣1),C點(diǎn)的坐標(biāo)是(1,1),

故答案為:(﹣1,4),(﹣4,﹣1),(1,1);

2)用一個正方形將△ABC框住,如圖所示

SABCS正方形EFGBSBEASAFCSBGC5×5

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將ABCD沿CE折疊,使點(diǎn)D落在BC邊上的F處,點(diǎn)EAD上.

1)求證:四邊形ABFE為平行四邊形;

2)若AB=4BC=6,求四邊形ABFE的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線y1=kx+1(k<0)與直線y2=mx(m>0)的交點(diǎn)坐標(biāo)為(m),則不等式組mx﹣2<kx+1<mx的解集為( 。

A. x> B. <x< C. x< D. 0<x<

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線AB∥CD,F(xiàn)H平分∠EFD,F(xiàn)G⊥FH,∠AEF=62°,則∠GFC=_____度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,過點(diǎn)B(6,0)的直線AB與直線OA相交于點(diǎn)A(4,2),動點(diǎn)M沿路線O→A→C運(yùn)動.

(1)求直線AB的解析式.

(2)求OAC的面積.

(3)當(dāng)OMC的面積是OAC的面積的時,求出這時點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD、DEFG都是正方形,連接AE,CG.

(1)求證:AE=CG;
(2)觀察圖形,猜想AE與CG之間的位置關(guān)系,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,點(diǎn)A(0,0)、B(4,0)、C(0,4),在△ABC內(nèi)依次作等邊三角形,使一邊在x軸上,另一個頂點(diǎn)在BC邊上,作出的等邊三角形分別是第1個△AA1B1,第2個△B1A2B2,第3個△B2A3B3,…則第2017個等邊三角形的邊長等于( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知線段 AB 的兩個端點(diǎn)坐標(biāo)分別為Aa,5),B8,b),且

1)求 a,b 的值;

2)①連OA,OB,則SAOB 平方單位;(說明:SAOB 表示三角形 AOB 的面積,下同.)

②點(diǎn)PO點(diǎn)出發(fā)沿 y 軸負(fù)方向運(yùn)動,速度為每秒1個單位,連PAOBC,則運(yùn)動多少秒時,SABCSPOC ;

3)在(2)的條件下,過P作直線mAB,過B作直線 lx軸,直線m和直線l相交于點(diǎn)Q,請直接寫出點(diǎn)Q的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,DE⊥AB,BF⊥CD,垂足分別為E,F(xiàn).

(1)求證:△ADE≌△CBF;

(2)求證:四邊形BFDE為矩形.

查看答案和解析>>

同步練習(xí)冊答案