【題目】如圖,直線OD與x軸所夾的銳角為30°,OA1的長為2,△A1A2B1、△A2A3B2、△A3A4B3…△AnAn+1Bn均為等邊三邊形,點A1、A2、A3…An﹣1在x軸正半軸上依次排列,點B1、B2、B3…Bn在直線OD上依次排列,那么點B2的坐標(biāo)為____,點Bn的坐標(biāo)為____.
【答案】(3,)(3×2n﹣2,×2n﹣2)
【解析】
根據(jù)等邊三角形的性質(zhì)和∠B1OA2=30°,可求得∠B1OA2=∠A1B1O=30°,可求得OA2=2OA1=2,同理可求得OAn=2n﹣1,再求出△AnBnAn+1的邊長,進(jìn)一步可求得點Bn的坐標(biāo).
∵△A1B1A2為等邊三角形,∴∠B1A1A2=60°.
∵∠B1OA2=30°,∴∠B1OA2=∠A1B1O=30°,可求得:OA2=2OA1=2,同理可求得:OAn=2n﹣1.
∵∠BnOAn+1=30°,∠BnAnAn+1=60°,∴∠BnOAn+1=∠OBnAn=30°,∴BnAn=OAn=2n﹣1,即△AnBnAn+1的邊長為2n﹣1,則可求得其高為×2n﹣1=×2n﹣2,∴點Bn的橫坐標(biāo)為×2n﹣1+2n﹣1=×2n﹣1=3×2n﹣2,∴點Bn的坐標(biāo)為(3×2n﹣2,×2n﹣2),點B2的坐標(biāo)為(3,).
故答案為:(3,);(3×2n﹣2,×2n﹣2).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB與x軸交于點C,與y軸交于點B,點A(1,3),點B(0,2).連接AO
(1)求直線AB的解析式;
(2)求三角形AOC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在銳角△ABC中,AC是最短邊.以AC為直徑的⊙O,交BC于D,過O作OE∥BC,交OD于E,連接AD、AE、CE.
(1)求證:∠ACE=∠DCE;
(2)若∠B=45°,∠BAE=15°,求∠EAO的度數(shù);
(3)若AC=4,,求CF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點P在正方形ABCD邊AD上,連接PB.過點B作一條射線與邊DC的延長線交于點Q,使得∠QBE=∠PBC,其中E是邊AB延長線上的點,連接PQ.若PQ2=PB2+PD2+2,則△PAB的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在小山的東側(cè)A點有一個熱氣球,由于受風(fēng)的影響,以30米/分的速度沿與地面成75°角的方向飛行,25分鐘后到達(dá)C處,此時熱氣球上的人測得小山西側(cè)B點的俯角為30°,則小山東西兩側(cè)A,B兩點間的距離為( 。┟祝
A. 750 B. 375 C. 375 D. 750
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線l過點M(3,0),且平行于y軸.
(1)如果△ABC三個頂點的坐標(biāo)分別是A(﹣2,0),B(﹣1,0),C(﹣1,2),△ABC關(guān)于y軸的對稱圖形是△A1B1C1,△A1B1C1關(guān)于直線l的對稱圖形是△A2B2C2,寫出△A2B2C2的三個頂點的坐標(biāo);
(2)如果點P的坐標(biāo)是(﹣a,0),其中a>0,點P關(guān)于y軸的對稱點是P1,點P1關(guān)于直線l的對稱點是P2,求PP2的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC和△DEB中,已知AB=DE,還需添加兩個條件才能使△ABC≌△DEC,不能添加的一組條件是
A.BC=EC,∠B=∠E B.BC=EC,AC=DC
C.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC和△ADE中,AB=AC,AD=AE,且∠BAC=∠DAE,點E在BC上.過點D作DF∥BC,連接DB.
求證:(1)△ABD≌△ACE;
(2)DF=CE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AD平分∠BAC,EG⊥AD,分別交AB,AD,AC,BC的延長線于E,H,F,G
已知四個式子:①∠1= (∠2+∠3);②∠1=(∠3-∠2);③∠4= (∠3-∠2);④∠4=∠1.其中正確的式子有______.(填寫序號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com