【題目】如圖所示,點(diǎn)C是線段AB上的一點(diǎn),點(diǎn)D是線段AB的中點(diǎn),點(diǎn)E是線段BC的中點(diǎn).

(1)當(dāng)AC=10,BC=8時(shí),求線段DE的長(zhǎng)度;

(2)當(dāng)AC=m,BC=n(m>n)時(shí),求線段DE的長(zhǎng)度;

(3)從(1)(2)的結(jié)果中,你發(fā)現(xiàn)了什么規(guī)律?請(qǐng)直接寫出來(lái).

【答案】(1)4;(2).(3)DE的長(zhǎng)等于AC的長(zhǎng).

【解析】

(1)先求出AC長(zhǎng),再根據(jù)線段的中點(diǎn)求出ADBE長(zhǎng),即可求出答案;

(2)先求出AC長(zhǎng),再根據(jù)線段的中點(diǎn)求出ADBE長(zhǎng),即可求出答案;

(3)根據(jù)(1)和(2)中的結(jié)果得出即可.

解:(1)AC=8,BC=6,

AB=14,

∵點(diǎn)D是線段AB的中點(diǎn),

BC=6,點(diǎn)E是線段BC的中點(diǎn).

DE=14﹣7﹣3=4;

(2)AC=m,BC=n,

AB=m+n.

∵點(diǎn)D是線段AB的中點(diǎn),

BC=n,點(diǎn)E是線段BC的中點(diǎn).

(3)規(guī)律:DE的長(zhǎng)等于AC的長(zhǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,△ABC的兩條角平分線相交于一點(diǎn)G,∠BAC=76°,∠ABE=20°,求∠BEC,∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,兩個(gè)大小不同的球在水平面上靠在一起,組成如圖所示的幾何體,則該幾何體的左視圖是( 。
A.兩個(gè)內(nèi)切的圓
B.兩個(gè)外切的圓
C.兩個(gè)相交的圓
D.兩個(gè)外離的圓

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一次函數(shù)的圖象經(jīng)過(guò)點(diǎn)A(2,4)和B(﹣1,﹣5)兩點(diǎn).

(1)求出該一次函數(shù)的表達(dá)式;

(2)判斷(﹣5,﹣4)是否在這個(gè)函數(shù)的圖象上?

(3)求出該函數(shù)圖象與坐標(biāo)軸圍成的三角形面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】周末,小明和爸爸在400米的環(huán)形跑道上騎車鍛煉,他們?cè)谕坏攸c(diǎn)沿著同一方向同時(shí)出發(fā),騎行結(jié)束后兩人有如下對(duì)話:

(1)他們的對(duì)話內(nèi)容,求小明和爸爸的騎行速度,

(2)一次追上小明后,在第二次相遇前,再經(jīng)過(guò)多少分鐘,小明和爸爸相距50m?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班13位同學(xué)參加每周一次的衛(wèi)生大掃除,按學(xué)校的衛(wèi)生要求需要完成總面積為60m2的三個(gè)項(xiàng)目的任務(wù),三個(gè)項(xiàng)目的面積比例和每人每分鐘完成各項(xiàng)目的工作量如圖所示:

(1)從統(tǒng)計(jì)圖中可知:擦玻璃的面積占總面積的百分比為 , 每人每分鐘擦課桌椅
m2;
(2)掃地拖地的面積是m2
(3)他們一起完成掃地和拖地任務(wù)后,把這13人分成兩組,一組去擦玻璃,一組去擦課桌椅,如果你是衛(wèi)生委員,該如何分配這兩組的人數(shù),才能最快地完成任務(wù)?(要有詳細(xì)的解答過(guò)程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法錯(cuò)誤的是(  )

A. n邊形的一個(gè)頂點(diǎn)出發(fā),分別連接這個(gè)頂點(diǎn)和其余不相鄰的各頂點(diǎn),可以把這個(gè)n邊形分成(n-3)個(gè)三角形

B. 當(dāng)9:30時(shí),時(shí)針和分針的小于平角的夾角是105°

C. 一個(gè)圓被三條半徑分成面積比為3∶4∶5的三個(gè)扇形,則最小扇形的圓心角為90°

D. 19.38°=19°22′48″

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰三角形ABC中,∠BAC=90°,AB=AC=1,BD平方∠ABC,點(diǎn)P在BD上,⊙P切AB于點(diǎn)Q,則AP+PQ的最小值等于

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市為了節(jié)約用水,采用分段收費(fèi)標(biāo)準(zhǔn).若某戶居民每月應(yīng)交水費(fèi)y()與用水量x()之間關(guān)系的圖象如圖,根據(jù)圖象回答:

(1)該市自來(lái)水收費(fèi)時(shí),若使用不足5噸,則每噸收費(fèi)多少元?超過(guò)5噸部分每噸收費(fèi)多少元?

(2)若某戶居民每月用水3.5噸,應(yīng)交水費(fèi)多少元?若某月交水費(fèi)17元,該戶居民用水多少噸?

查看答案和解析>>

同步練習(xí)冊(cè)答案