【題目】A、B、C 為數(shù)軸上三點(diǎn),若點(diǎn) C 到點(diǎn) A 的距離是點(diǎn) C 到點(diǎn) B 的距離的 2倍,則稱點(diǎn) C 是(A,B)的奇異點(diǎn),例如圖 1 中,點(diǎn) A 表示的數(shù)為﹣1,點(diǎn)B 表示的數(shù)為 2,表示 1 的點(diǎn) C 到點(diǎn) A 的距離為 2,到點(diǎn) B 的距離為 1,則點(diǎn)C 是(A,B)的奇異點(diǎn),但不是(B,A)的奇異點(diǎn).
(1)在圖 1 中,直接說出點(diǎn) D 是(A,B)還是(B,C)的奇異點(diǎn);
(2)如圖 2,若數(shù)軸上 M、N 兩點(diǎn)表示的數(shù)分別為﹣2 和 4,(M,N)的奇異點(diǎn) K 在 M、N 兩點(diǎn)之間,請求出 K 點(diǎn)表示的數(shù);
(3)如圖 3,A、B 在數(shù)軸上表示的數(shù)分別為﹣20 和 40,現(xiàn)有一點(diǎn) P 從點(diǎn) B 出發(fā),向左運(yùn)動(dòng).
①若點(diǎn) P 到達(dá)點(diǎn) A 停止,則當(dāng)點(diǎn) P 表示的數(shù)為多少時(shí),P、A、B 中恰有一個(gè)點(diǎn)為其余兩點(diǎn)的奇異點(diǎn)?
②若點(diǎn) P 到達(dá)點(diǎn) A 后繼續(xù)向左運(yùn)動(dòng),是否存在使得 P、A、B 中恰有一個(gè)點(diǎn)為其余兩點(diǎn)的奇異點(diǎn)的情況?若存在,請直接寫出此時(shí) PB 的距離;若不存在,請說明理由.
【答案】(1)點(diǎn)D是(B,C)的奇異點(diǎn),不是(A,B)的奇異點(diǎn);(2)(M,N)的奇異點(diǎn)表示的數(shù)是2;(3)①點(diǎn)P表示的數(shù)是0或10或20時(shí),P、A、B中恰有一個(gè)點(diǎn)為其余兩點(diǎn)的奇異點(diǎn);②PB=120或180或90.
【解析】
(1)根據(jù)奇異點(diǎn)的定義和數(shù)軸上兩點(diǎn)間的距離,即可求出點(diǎn)D到點(diǎn)A的距離為1,到點(diǎn)B的距離為2,以及點(diǎn)D到點(diǎn)C的距離為1,就可以對點(diǎn)D做出判斷.
(2)設(shè)奇異點(diǎn)表示的數(shù)為x,根據(jù)奇異點(diǎn)的定義可得方程:x﹣(﹣2)=2(4﹣x).從而求得x值.
(3)①當(dāng)P在A、B兩點(diǎn)之間時(shí),P、A、B中恰有一個(gè)點(diǎn)為其余兩點(diǎn)的奇異點(diǎn)需分類討論,具體分四種情況討論:當(dāng)點(diǎn)P是(A,B)的奇異點(diǎn)時(shí)、當(dāng)點(diǎn)P是(B,A)的奇異點(diǎn)時(shí)、當(dāng)點(diǎn)A是(B,P)的奇異點(diǎn)時(shí)、當(dāng)點(diǎn)B是(A,P)的奇異點(diǎn)時(shí),計(jì)算方法同(1).
②點(diǎn)P到達(dá)點(diǎn)A后繼續(xù)向左運(yùn)動(dòng),是否存在使得P、A、B中恰有一個(gè)點(diǎn)為其余兩點(diǎn)的奇異點(diǎn)的情況方法同①分四種情況討論:當(dāng)點(diǎn)P為(B,A)的奇異點(diǎn)時(shí),PB=120;
當(dāng)點(diǎn)A為(P,B)的奇異點(diǎn)時(shí),PB=180;當(dāng)點(diǎn)A為(B,P)的奇異點(diǎn)時(shí),PB=90;
當(dāng)點(diǎn)B為(P,A)的奇異點(diǎn)時(shí),PB=120.
(1)在圖1中,點(diǎn)D到點(diǎn)A的距離為1,到點(diǎn)B的距離為2,
∴點(diǎn)D是(B,C)的奇異點(diǎn),不是(A,B)的奇異點(diǎn);
(2)設(shè)奇異點(diǎn)表示的數(shù)為x,
則由題意,得x﹣(﹣2)=2(4﹣x).
解得x=2.
∴(M,N)的奇異點(diǎn)表示的數(shù)是2;
(3)①設(shè)點(diǎn)P表示的數(shù)為y.
當(dāng)點(diǎn)P是(A,B)的奇異點(diǎn)時(shí),
則有y+20=2(40﹣y),
解得y=20.
當(dāng)點(diǎn)P是(B,A)的奇異點(diǎn)時(shí),
則有40﹣y=2(y+20),
解得y=0.
當(dāng)點(diǎn)A是(B,P)的奇異點(diǎn)時(shí),
則有40+20=2(y+20),
解得y=10.
當(dāng)點(diǎn)B是(A,P)的奇異點(diǎn)時(shí),
則有40+20=2(40﹣y),解得y=10.
∴當(dāng)點(diǎn)P表示的數(shù)是0或10或20時(shí),
P、A、B中恰有一個(gè)點(diǎn)為其余兩點(diǎn)的奇異點(diǎn).
②當(dāng)點(diǎn)P為(B,A)的奇異點(diǎn)時(shí),PB=120;
當(dāng)點(diǎn)A為(P,B)的奇異點(diǎn)時(shí),PB=180;
當(dāng)點(diǎn)A為(B,P)的奇異點(diǎn)時(shí),PB=90;
當(dāng)點(diǎn)B為(P,A)的奇異點(diǎn)時(shí),PB=120.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】暑期臨近,重慶市某中學(xué)校為了豐富學(xué)生的暑期文化生活,同時(shí)幫助孩子融洽親子關(guān)系,增進(jìn)親子間的情感交流,計(jì)劃組織學(xué)生去某景區(qū)參加為期一周的“親子一家游”活動(dòng). 若報(bào)名參加此次活動(dòng)的學(xué)生人數(shù)共有56人,其中要求參加的每名學(xué)生都至少需要一名家長陪同參加.
(1)假設(shè)參加此次活動(dòng)的家長人數(shù)是參加學(xué)生人數(shù)的2倍少2人,為了此次活動(dòng)學(xué)校專門為每名學(xué)生和家長購買一件T恤衫, 家長的T恤衫每購買8件贈送1件學(xué)生T恤衫(不足8件不贈送),學(xué)生T恤衫每件15元,學(xué)校購買服裝的費(fèi)用不超過3401元,請問每件家長T恤衫的價(jià)格最高是多少元?
(2)已知該景區(qū)的成人票價(jià)每張100元,學(xué)生票價(jià)每張50元,為了支持此次活動(dòng),該景區(qū)特地推出如下優(yōu)惠活動(dòng):每張成人票價(jià)格下調(diào)a%,學(xué)生票價(jià)格下調(diào).a% 另外,經(jīng)統(tǒng)計(jì)此次參加活動(dòng)的家長人數(shù)比學(xué)生人數(shù)多a%, 參加此次活動(dòng)的購買票價(jià)總費(fèi)用比未優(yōu)惠前減少了a%,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線y=ax2+bx﹣2(a≠0)與x軸交于A(1,0)、B(3,0)兩點(diǎn),與y軸交于點(diǎn)C,其頂點(diǎn)為D.
(1)求拋物線的解析式;
(2)一動(dòng)點(diǎn)M從點(diǎn)D出發(fā),以每秒1個(gè)單位的速度沿拋物線的對稱軸向下運(yùn)動(dòng),連OM,BM,設(shè)運(yùn)動(dòng)時(shí)間為t秒(t=0),在點(diǎn)M的運(yùn)動(dòng)過程中,當(dāng)∠OMB=90°時(shí),求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中每個(gè)小方格都是邊長為1的正方形,已知學(xué)校的坐標(biāo)為A(2,2).
(1)請?jiān)趫D中建立適當(dāng)?shù)闹苯亲鴺?biāo)系,并寫出圖書館的坐標(biāo);
(2)若體育館的坐標(biāo)為C(-2,3),請?jiān)谧鴺?biāo)系中標(biāo)出體育館的位置,并順次連接學(xué)校、圖書館、體育館,得到△ABC,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD是矩形,cot∠ADB= ,AB=16.點(diǎn)E在射線BC上,點(diǎn)F在線段BD上,且∠DEF=∠ADB.
(1)求線段BD的長;
(2)設(shè)BE=x,△DEF的面積為y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出函數(shù)定義域;
(3)當(dāng)△DEF為等腰三角形時(shí),求線段BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有30箱蘋果,以每箱20千克為標(biāo)準(zhǔn),超過或不足的千克數(shù)分別用正、負(fù)數(shù)來表示,記錄如下:
與標(biāo)準(zhǔn)質(zhì)質(zhì)量的差 (單位:千克) | 1 | 2 | |||
箱數(shù) | 2 | 6 | 10 | 8 | 4 |
(1)這30箱蘋果中,最重的一箱比最輕的一箱重多少千克?
(2)與標(biāo)準(zhǔn)質(zhì)量比較,這30箱蘋果總計(jì)超過或不足多少千克?
(3)若蘋果每千克售價(jià)6元,則出售這30箱蘋果可賣多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△ABC中,BF是AC邊上中線,點(diǎn)D在BF上,連接AD,在AD的右側(cè)作等邊△ADE,連接EF,當(dāng)△AEF周長最小時(shí),∠CFE的大小是( 。
A. 30° B. 45° C. 60° D. 90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A、B、C 為數(shù)軸上三點(diǎn),若點(diǎn) C 到點(diǎn) A 的距離是點(diǎn) C 到點(diǎn) B 的距離的 2倍,則稱點(diǎn) C 是(A,B)的奇異點(diǎn),例如圖 1 中,點(diǎn) A 表示的數(shù)為﹣1,點(diǎn)B 表示的數(shù)為 2,表示 1 的點(diǎn) C 到點(diǎn) A 的距離為 2,到點(diǎn) B 的距離為 1,則點(diǎn)C 是(A,B)的奇異點(diǎn),但不是(B,A)的奇異點(diǎn).
(1)在圖 1 中,直接說出點(diǎn) D 是(A,B)還是(B,C)的奇異點(diǎn);
(2)如圖 2,若數(shù)軸上 M、N 兩點(diǎn)表示的數(shù)分別為﹣2 和 4,(M,N)的奇異點(diǎn) K 在 M、N 兩點(diǎn)之間,請求出 K 點(diǎn)表示的數(shù);
(3)如圖 3,A、B 在數(shù)軸上表示的數(shù)分別為﹣20 和 40,現(xiàn)有一點(diǎn) P 從點(diǎn) B 出發(fā),向左運(yùn)動(dòng).
①若點(diǎn) P 到達(dá)點(diǎn) A 停止,則當(dāng)點(diǎn) P 表示的數(shù)為多少時(shí),P、A、B 中恰有一個(gè)點(diǎn)為其余兩點(diǎn)的奇異點(diǎn)?
②若點(diǎn) P 到達(dá)點(diǎn) A 后繼續(xù)向左運(yùn)動(dòng),是否存在使得 P、A、B 中恰有一個(gè)點(diǎn)為其余兩點(diǎn)的奇異點(diǎn)的情況?若存在,請直接寫出此時(shí) PB 的距離;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com