【題目】如圖,已知A(﹣2,3)、B(4,3)、C(﹣1,﹣3).
(1)求點(diǎn)C到x軸的距離;
(2)分別求△ABC的三邊長(zhǎng);
(3)點(diǎn)P在y軸上,當(dāng)△ABP的面積為6時(shí),請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo).
【答案】(1)3;(2)AB=6,AC=,BC=;(3)(0,2),(0,﹣2).
【解析】
試題分析:(1)直接利用C點(diǎn)坐標(biāo)得出點(diǎn)C到x軸的距離;
(2)利用A,C,B的坐標(biāo)分別得出各邊長(zhǎng)即可;
(3)利用△ABP的面積為6,得出P到AB的距離進(jìn)而得出答案.
解:(1)∵C(﹣1,﹣3),
∴點(diǎn)C到x軸的距離為:3;
(2)∵A(﹣2,3)、B(4,3)、C(﹣1,﹣3),
∴AB=4﹣(﹣2)=6,
AC==,BC==;
(3)∵點(diǎn)P在y軸上,當(dāng)△ABP的面積為6時(shí),
∴P到AB的距離為:6÷(×6)=2,
故點(diǎn)P的坐標(biāo)為:(0,2),(0,﹣2).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(1,2),B(3,1),C(-2,-1).
(1)在圖中作出關(guān)于軸對(duì)稱的.
(2)寫(xiě)出點(diǎn)的坐標(biāo)(直接寫(xiě)答案).
A1_____________,B1______________,C1______________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)方法感悟:如圖①,在正方形ABCD中,點(diǎn)E、F分別為DC、BC邊上的點(diǎn),且滿足∠EAF=45°,連接EF.將△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到△ABG,易證△GAF≌△EAF,從而得到結(jié)論:DE+BF=EF.根據(jù)這個(gè)結(jié)論,若CD=6,DE=2,求EF的長(zhǎng).
(2)方法遷移:如圖②,若在四邊形ABCD中,AB=AD,∠B+∠D=180°,E、F分別是BC、CD上的點(diǎn),且∠EAF=∠BAD,試猜想DE,BF,EF之間有何數(shù)量關(guān)系,證明你的結(jié)論.
(3)問(wèn)題拓展:如圖③,在四邊形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分別是邊BC、CD延長(zhǎng)線上的點(diǎn),且∠EAF=∠BAD,試探究線段EF、BE、FD之間的數(shù)量關(guān)系,請(qǐng)直接寫(xiě)出你的猜想(不必說(shuō)明理由).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,∠ACB=90°,OC=2BO,AC=6,點(diǎn)B的坐標(biāo)為(1,0),拋物線y=﹣x2+bx+c經(jīng)過(guò)A、B兩點(diǎn).
(1)求點(diǎn)A的坐標(biāo);
(2)求拋物線的解析式;
(3)點(diǎn)P是直線AB上方拋物線上的一點(diǎn),過(guò)點(diǎn)P作PD垂直x軸于點(diǎn)D,交線段AB于點(diǎn)E,使PE=DE.
①求點(diǎn)P的坐標(biāo);
②在直線PD上是否存在點(diǎn)M,使△ABM為直角三角形?若存在,求出符合條件的所有點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲汽車(chē)出租公司按每100千米150元收取租車(chē)費(fèi):乙汽車(chē)出租公司按每100千米50元收取租車(chē)費(fèi),另加管理費(fèi)800元設(shè)用車(chē)?yán)锍虨?/span>x千米租用甲、乙兩家公司的汽車(chē)費(fèi)用分別為元、元
分別求出、與x之間的函數(shù)關(guān)系式;
判斷x在什么范圍內(nèi),租用乙公司的汽車(chē)費(fèi)用比租用甲公司的汽車(chē)費(fèi)用少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明在解決問(wèn)題:已知a=,求2a2-8a+1的值,他是這樣分析與解答的:
因?yàn)?/span>a===2-,
所以a-2=-.
所以(a-2)2=3,即a2-4a+4=3.
所以a2-4a=-1.
所以2a2-8a+1=2(a2-4a)+1=2×(-1)+1=-1.
請(qǐng)你根據(jù)小明的分析過(guò)程,解決如下問(wèn)題:
(1)計(jì)算: = - .
(2)計(jì)算:+…+;
(3)若a=,求4a2-8a+1的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在Rt△ABC中,∠ACB=90°,∠B=30°,將△ABC繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn),可以得到△DEC.若點(diǎn)D剛好落在AB邊上,取DE邊的中點(diǎn)F,連接FC,試判斷四邊形ACFD的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一副直角三角板如圖放置,點(diǎn)C在FD的延長(zhǎng)線上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,試求CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),AB=7cm,AC⊥AB,BD⊥AB 垂足分別為 A、B,AC=5cm.點(diǎn)P 在線段 AB 上以 2cm/s 的速度由點(diǎn) A 向點(diǎn)B 運(yùn)動(dòng),同時(shí),點(diǎn) Q 在射線 BD 上運(yùn)動(dòng).它們運(yùn) 動(dòng)的時(shí)間為 t(s)(當(dāng)點(diǎn) P 運(yùn)動(dòng)結(jié)束時(shí),點(diǎn) Q 運(yùn)動(dòng)隨之結(jié)束).
(1)若點(diǎn) Q 的運(yùn)動(dòng)速度與點(diǎn) P 的運(yùn)動(dòng)速度相等,當(dāng) t=1 時(shí),△ACP 與△BPQ 是否全等, 并判斷此時(shí)線段 PC 和線段 PQ 的位置關(guān)系,請(qǐng)分別說(shuō)明理由;
(2)如圖(2),若“AC⊥AB,BD⊥AB” 改為 “∠CAB=∠DBA=60°”,點(diǎn) Q 的運(yùn)動(dòng)速 度為 x cm/s,其他條件不變,當(dāng)點(diǎn) P、Q 運(yùn)動(dòng)到某處時(shí),有△ACP 與△BPQ 全等,求出相應(yīng)的 x、t 的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com