分析 (1)由于平行四邊形對角線的交點是它的對稱中心,即可得出OE=OF、OG=OH;根據(jù)對角線互相平分的四邊形是平行四邊形即可判斷出EGFH的性質(zhì);
(2)當(dāng)EF⊥GH時,平行四邊形EGFH的對角線互相垂直平分,故四邊形EGFH是菱形;
(3)若平行四邊形ABCD變?yōu)榫匦,即AC=BD時,對四邊形EGFH的形狀不會產(chǎn)生影響,故結(jié)論同(2);
若平行四邊形ABCD變?yōu)榱庑,即AC⊥BD時,對四邊形EGFH的形狀不會產(chǎn)生影響,故結(jié)論同(2);
當(dāng)四邊形ABCD是正方形,則對角線相等且互相垂直平分;可通過證△BOG≌△COF,得OG=OF,從而證得菱形的對角線相等,根據(jù)對角線相等的菱形是正方形即可判斷出EGFH的形狀.
解答 (1)證明:∵四邊形ABCD是平行四邊形,
∴AO=CO,AD∥BC,
∴∠DAC=∠BCA,
在△AOE和△COF中,
$\left\{\begin{array}{l}{∠DAC=∠BCA}\\{∠AOE=∠COE}\\{AO=CO}\end{array}\right.$,
∴△AOE≌△COF(AAS),
∴EO=FO;
(2)解:四邊形EGFH是菱形;
理由:如圖②:
由(1)可知,OE=OF,
同理可得:OG=OH,
∴四邊形EGFH是平行四邊形,
又∵EF⊥GH,
∴四邊形EGFH是菱形;
(3)解:若平行四邊形ABCD變?yōu)榫匦螘r,四邊形EGFH是菱形;
理由:由(2)知四邊形EGFH是菱形,
當(dāng)AC=BD時,對四邊形EGFH的形狀不會產(chǎn)生影響;
故答案為:菱形;
若平行四邊形ABCD變?yōu)榱庑螘r,四邊形EGFH是菱形;
理由:由(2)知四邊形EGFH是菱形,
當(dāng)AC⊥BD時,對四邊形EGFH的形狀不會產(chǎn)生影響;
故答案為:菱形;
若平行四邊形ABCD變?yōu)檎叫螘r,四邊形EGFH是四邊形EGFH是正方形;
理由:∵四邊形ABCD是正方形,
∴∠BOC=90°,∠GBO=∠FCO=45°,OB=OC;
∵EF⊥GH,
∴∠GOF=90°;
∠BOG+∠BOF=∠COF+∠BOF=90°
∴∠BOG=∠COF;
在△BOG和△COF中
$\left\{\begin{array}{l}{∠BOG=∠COF}\\{BO=CO}\\{∠GBO=∠FCO}\end{array}\right.$,
∴△BOG≌△COF(ASA);
∴OG=OF,
同理可得:EO=OH,
∴GH=EF;
由(3)知四邊形EGFH是菱形,
又EF=GH,
∴四邊形EGFH是正方形.
故答案為:正方形.
點評 此題主要考查了四邊形綜合、平行四邊形、菱形、矩形、正方形的判定和性質(zhì)以及全等三角形的判定和性質(zhì);熟練掌握各特殊四邊形的聯(lián)系和區(qū)別是解答此類題目的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | y=$\frac{1}{2}$x-1 | B. | y=2x+2 | C. | y=-x-1 | D. | y=2x-1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com