【題目】解答題
(1)一個數(shù)的絕對值是指在數(shù)軸上表示這個數(shù)的點到的距離;
(2)若|a|=﹣a,則a0;
(3)有理數(shù)a、b在數(shù)軸上的位置如圖所示,請化簡|a|+|b|+|a+b|.

【答案】
(1)原點
(2)≤
(3)解:∵由各點在數(shù)軸上的位置可知,a<﹣1<0<b<1,

∴a<0,b>0,a+b<0,

∴|a|=﹣a,|b|=b,|a+b|=﹣a﹣b,

∴原式=﹣a+b﹣a﹣b=﹣2a


【解析】解:(1)一個數(shù)的絕對值是指在數(shù)軸上表示這個數(shù)的點到原點的距離.所以答案是:原點;(2)∵|a|=﹣a,
∴a≤0.
所以答案是:≤;
【考點精析】解答此題的關(guān)鍵在于理解數(shù)軸的相關(guān)知識,掌握數(shù)軸是規(guī)定了原點、正方向、單位長度的一條直線,以及對絕對值的理解,了解正數(shù)的絕對值是其本身,0的絕對值是0,負(fù)數(shù)的絕對值是它的相反數(shù);注意:絕對值的意義是數(shù)軸上表示某數(shù)的點離開原點的距離.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.

(1)求證:△ADC≌△CEB.
(2)AD=5cm,DE=3cm,求BE的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若點(3a﹣6,2a+10)是y軸上的點,則a的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖一根木棒放在數(shù)軸上,木棒的左端與數(shù)軸上的點A重合,右端與點B重合.

(1)若將木棒沿數(shù)軸向右水平移動,則當(dāng)它的左端移動到B點時,它的右端在數(shù)軸上所對應(yīng)的數(shù)為20;若將木棒沿數(shù)軸向左水平移動,則當(dāng)它的右端移動到A點時,則它的左端在數(shù)軸上所對應(yīng)的數(shù)為5(單位:cm),由此可得到木棒長為cm.
(2)由題(1)的啟發(fā),請你能借助“數(shù)軸”這個工具幫助小紅解決下列問題:
問題:一天,小紅去問曾當(dāng)過數(shù)學(xué)老師現(xiàn)在退休在家的爺爺?shù)哪挲g,爺爺說:“我若是你現(xiàn)在這么大,你還要40年才出生;你若是我現(xiàn)在這么大,我已經(jīng)125歲,是老壽星了,哈哈!”,請求出爺爺現(xiàn)在多少歲了?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a>b且a+b=0,則(
A.a<0
B.b>0
C.b≤0
D.a>0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:
(1)3a2b3÷ a3b ab3
(2)( 34÷( 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,AB=AC,∠BAC=90°,分別過B,C向過點A的直線作垂線,垂足分別為點E,F(xiàn).
(1)如圖(1),過A的直線與斜邊BC不相交時,求證:①△ABE≌△CAF; ②EF=BE+CF

(2)如圖(2),過A的直線與斜邊BC相交時,其他條件不變,若BE=10,CF=3,試求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們規(guī)定:將一個平面圖形分成面積相等的兩部分的直線叫做該平面圖形的“等積線”,等積線被這個平面圖形截得的線段叫做該圖形的“等積線段”(例如三角形的中線就是三角形的等積線段).已知菱形的邊長為4,且有一個內(nèi)角為60°,設(shè)它的等積線段長為m,則m的取值范圍是.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】自開展學(xué)生每天鍛煉1小時活動后,我市某中學(xué)根據(jù)學(xué)校實際情況,決定開設(shè)A:毽子,B:籃球,C:跑步,D:跳繩四種運動項目.為了了解學(xué)生最喜歡哪一種項目,隨機抽取了部分學(xué)生進行調(diào)查,并將調(diào)查結(jié)果繪制成如圖統(tǒng)計圖.請結(jié)合圖中信息解答下列問題:

1)該校本次調(diào)查中,共調(diào)查了多少名學(xué)生?

2)請將兩個統(tǒng)計圖補充完整;

3)在本次調(diào)查的學(xué)生中隨機抽取1人,他喜歡跑步的概率有多大?

查看答案和解析>>

同步練習(xí)冊答案