【題目】如圖,D是△ABC的BC邊上一點,連接AD,作△ABD的外接圓,將△ADC沿直線AD折疊,點C的對應(yīng)點E落在上.
(1)求證:AE=AB;
(2)若∠CAB=90°,cos∠ADB=,BE=2,求BC的長.
【答案】(1)證明見解析;(2)BC=
【解析】分析: (1)由翻折的性質(zhì)得出△ADE≌△ADC,根據(jù)全等三角形對應(yīng)角相等,對應(yīng)邊相等得出∠AED=∠ACD,AE=AC,根據(jù)同弧所對的圓周角相等得出∠ABD=∠AED,根據(jù)等量代換得出∠ABD=∠ACD,根據(jù)等角對等邊得出AB=AC,從而得出結(jié)論;
(2)如圖,過點A作AH⊥BE于點H,根據(jù)等腰三角形的三線合一得出BH=EH=1,根據(jù)等腰三角形的性質(zhì)及圓周角定理得出∠ABE=∠AEB=ADB,根據(jù)等角的同名三角函數(shù)值相等及余弦函數(shù)的定義得出BH∶AB = 1∶3,從而得出AC=AB=3,在Rt三角形ABC中,利用勾股定理得出BC的長.
詳解:
(1)解 :由題意得△ADE≌△ADC,
∴∠AED=∠ACD,AE=AC
∵∠ABD=∠AED,
∴∠ABD=∠ACD
∴AB=AC
∴AE=AB
(2)解 :如圖,過點A作AH⊥BE于點H
∵AB=AE,BE=2
∴BH=EH=1
∵∠ABE=∠AEB=ADB,cos∠ADB=
∴cos∠ABE=cos∠ADB=
∴ =
∴AC=AB=3
∵∠BAC=90°,AC=AB
∴BC=
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是等邊△ABC內(nèi)一點,且PA=6,PC=8,PB=10,若△APB繞點A逆時針旋轉(zhuǎn)60后,得到△AP′C,則∠APC=( ).
A.150°B.120°C.100°D.110°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,∠C=90°,AC=3,BC=4,將△ABC繞點C順時針旋轉(zhuǎn)a度(0°<a<180°)得到△DCE,點A與點D對應(yīng),點B與點E對應(yīng),當(dāng)點D落在△ABC的邊上時,則BD的長_______
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某小區(qū)準(zhǔn)備新建50個停車位,用以解決小區(qū)停車難的問題.已知新建1個地上停車位和1個地下停車位共需0.6萬元;新建3個地上停車位和2個地下停車位共需1.3萬元.
(1)該小區(qū)新建1個地上停車位和1個地下停車位各需多少萬元?
(2)該小區(qū)的物業(yè)部門預(yù)計投資金額超過12萬元而不超過13萬元,那么共有幾種建造停車位的方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)在第一象限內(nèi)的圖象經(jīng)過菱形OABC的頂點A和C.若菱形OABC的面積為10,∠AOC=30°,則k的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,一個扇形紙片的圓心角為90°,半徑為6.如圖2,將這張扇形紙片折疊,使點A與點O恰好重合,折痕為CD,圖中陰影為重合部分,則陰影部分的面積為_____.(答案用根號表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對給定的一張矩形紙片ABCD進行如下操作:先沿CE折疊,使點B落在CD邊上(如圖①),再沿CH折疊,這時發(fā)現(xiàn)點E恰好與點D重合(如圖②)
(1)根據(jù)以上操作和發(fā)現(xiàn),求的值;
(2)將該矩形紙片展開.
①如圖③,折疊該矩形紙片,使點C與點H重合,折痕與AB相交于點P,再將該矩形紙片展開.求證:∠HPC=90°;
②不借助工具,利用圖④探索一種新的折疊方法,找出與圖③中位置相同的P點,要求只有一條折痕,且點P在折痕上,請簡要說明折疊方法.(不需說明理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】矩形ABCD中,AB=1,AD=2,動點M、N分別從頂點A、B同時出發(fā),且分別沿著AD、BA運動,點N的速度是點M的2倍,點N到達頂點A時,則兩點同時停止運動,連接BM、CN交于點P,過點P分別作AB、AD的垂線,垂足分別為E、F,則線段EF的最小值為( 。
A.B.﹣1C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)活動課上,小穎同學(xué)用兩塊完全一樣的透明等腰直角三角板ABC、DEF進行探究活動.
操作:使點D落在線段AB的中點處并使DF過點C(如圖1),然后將其繞點D順時針旋轉(zhuǎn),直至點E落在AC的延長線上時結(jié)束操作,在此過程中,線段DE與AC或其延長線交于點K,線段BC與DF相交于點G(如圖2,3).
探究1:在圖2中,求證:△ADK∽△BGD.
探究2:在圖2中,求證:KD平分∠AKG.
探究3:
①在圖3中,KD仍平分∠AKG嗎?若平分,請加以證明;若不平分,請說明理由.
②在以上操作過程中,若設(shè)AC=BC=8,KG=x,△DKG的面積為y,請求出y與x的函數(shù)關(guān)系式,并直接寫出x的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com