【題目】如圖,△ABC的高BD與CE相交于點O,OD=OE,AO的延長線交BC于點M,請你從圖中找出幾對全等的直角三角形,并說明理由.
【答案】△ADO≌△AEO,△DOC≌△EOB,△COF≌△BOF,△ACF≌△ABF,△ADB≌△AEC,△BCE≌△CBD.理由見解析.
【解析】
試題△ADO≌△AEO,△DOC≌△EOB,△COF≌△BOF,△ACF≌△ABF,△ADB≌△AEC,△BCE≌△CBD,利用全等三角形的判定可證明,做題時,要結(jié)合已知條件與三角形全等的判定方法逐個驗證.
試題解析:△ADO≌△AEO,△DOC≌△EOB,△COF≌△BOF,△ACF≌△ABF,△ADB≌△AEC,△BCE≌△CBD.
理由如下:
在△ADO與△AEO中,∠ADO=∠AEO=90°,
,
∴△ADO≌△AEO(HL),
∴∠DAO=∠EAO,AD=AE,
在△DOC與△EOB中,,
∴△DOC≌△EOB(ASA),
∴DC=EB,OC=OB,
∴DC+AD=EB+AE,即AC=AB,
∵∠DAO=∠EAO,
∴AM⊥BC,CM=BM,
在△COF與△BOF中,∠OMC=∠OMB=90°,
,
∴△COF≌△BOF(HL),
在△ACF與△ABF中,∠AFC=∠AFB=90°,
,
∴△ACF≌△ABF(HL),
在△ADB與△AEC中,
,
∴△ADB≌△AEC(SAS),
在△BCE與△CBD中,∠BEC=∠CDB=90°,
,
∴△BCE≌△CBD(HL).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠ABE=∠ACD=Rt∠,AE=AD,∠ABC=∠ACB.求證:∠BAE=∠CAD.
請補全證明過程,并在括號里寫上理由.
證明:在△ABC中,
∵∠ABC=∠ACB
∴AB= ( )
在Rt△ABE和Rt△ACD中,
∵ =AC, =AD
∴Rt△ABE≌Rt△ACD( )
∴∠BAE=∠CAD( )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,且、、.將其平移后得到,若的對應點是,,的對應點的坐標是.
(1)在平面直角坐標系中畫出和;
(2)此次平移也可看作向_________平移________個單位長度,再向__________平移了________個單位長度得到;
(3)求的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,折疊矩形ABCD的一邊AD,使點D落在BC邊的點F處,已知折痕AE=5 cm,且tan∠EFC= ,則矩形ABCD的周長是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】A、B兩市相距150千米,分別從A、B處測得國家級風景區(qū)中心C處的方向角如圖所示,風景區(qū)區(qū)域是以C為圓心,45千米為半徑的圓,tanα=1.627,tanβ=1.373.為了開發(fā)旅游,有關(guān)部門設計修建連接AB兩市的高速公路.問連接AB高速公路是否穿過風景區(qū),請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】操作與探索:
已知點O為直線AB上一點,作射線OC,將直角三角板ODE放置在直線上方(如圖①),使直角頂點與點O重合,一條直角邊OD重疊在射線OA上,將三角板繞點O旋轉(zhuǎn)
(1)當三角板旋轉(zhuǎn)到如圖②的位置時,若OD平分∠AOC,試說明OE也平分∠BOC.
(2)若OC⊥AB,垂足為點O(如圖③),請直接寫出與∠DOB互補的角
(3)若∠AOC=135°(如圖④),三角板繞點O按順時針從如圖①的位置開始旋轉(zhuǎn),到OE邊與射線OB重合結(jié)束. 請通過操作,探索:在旋轉(zhuǎn)過程中,∠DOB∠COE的差是否發(fā)生變化?若不變,請求出這個差值;若變化,請用含有n(n為三角板旋轉(zhuǎn)的度數(shù))的代數(shù)式表示這個差.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】兩塊等腰直角三角形紙片AOB和COD按圖1所示放置,直角頂點重合在點O處,AB=25,CD=17.保持紙片AOB不動,將紙片COD繞點O逆時針旋轉(zhuǎn)α(0°<α<90°)角度,如圖2所示.
(1)利用圖2證明AC=BD且AC⊥BD;
(2)當BD與CD在同一直線上(如圖3)時,求AC的長和α的正弦值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在長方形紙片ABCD中,AB=m,AD=n,將兩張邊長分別為6和4的正方形紙片按圖1,圖2兩種方式放置(圖1,圖2中兩張正方形紙片均有部分重疊),長方形中未被這兩張正方形紙片覆蓋的部分用陰影表示,設圖1中陰影部分的面積為S1,圖2中陰影部分的面積為S2.
(1)在圖1中,EF= ,BF= ;(用含m的式子表示)
(2)請用含m、n的式子表示圖1,圖2中的s1,s2,若m-n=2,請問S2-S1的值為多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com