【題目】兩塊等腰直角三角形紙片AOB和COD按圖1所示放置,直角頂點重合在點O處,AB=25,CD=17.保持紙片AOB不動,將紙片COD繞點O逆時針旋轉α(0°<α<90°)角度,如圖2所示.
(1)利用圖2證明AC=BD且AC⊥BD;
(2)當BD與CD在同一直線上(如圖3)時,求AC的長和α的正弦值.
【答案】
(1)證明:如圖2中,延長BD交OA于G,交AC于E.
∵∠AOB=∠COD=90°,
∴∠AOC=∠DOB,
在△AOC和△BOD中,
,
∴△AOC≌△BOD,
∴AC=BD,∠CAO=∠DBO,
∵∠DBO+∠GOB=90°,
∵∠OGB=∠AGE,
∴∠CAO+∠AGE=90°,
∴∠AEG=90°,
∴BD⊥AC.
(2)解:如圖3中,設AC=x,
∵BD、CD在同一直線上,BD⊥AC,
∴△ABC是直角三角形,
∴AC2+BC2=AB2,
∴x2+(x+17)2=252,
解得x=7,
∵∠ODC=∠α+∠DBO=45°,∠ABC+∠DBO=45°,
∴∠α=∠ABC,
∴sinα=sin∠ABC= =
【解析】(1)如圖2中,延長BD交OA于G,交AC于E,只要證明△AOC≌△BOD即可解決問題.(2)如圖3中,設AC=x,在RT△ABC中,利用勾股定理求出x,再根據sinα=sin∠ABC= 即可解決問題.
科目:初中數學 來源: 題型:
【題目】學生在操場上利用三角函數測量旗桿AB的高,直線l為水平地面,兩個同學把30°的三角板和量角器按如圖所示的方式垂直放在地面上,量角器的零刻度線與地面重合,此時旗桿頂部B的影子恰好落在三角形板的頂點D處和量角器37°的刻度C處,已知三角形板的邊DE=60厘米,量角器的半徑r=25厘米,量角器的圓心O到A的距離為5米.
(1)則∠AOC=°(直接寫出答案)
(2)求旗桿AB的高度(精確到0.1米,參考數據sin37°≈0.6,cos37°≈0.8,tan37°≈0.75, ≈1.73)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,等邊△ABC中, AO是∠BAC的角平分線, D為 AO上一點,以 CD為一邊且在 CD下方作等邊△CDE,連接BE.
(1)求證:△ACD≌△BCE.
(2)延長BE至Q, P為BQ上一點,連接 CP、CQ使 CP=CQ=5,若 BC=6,求PQ的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】骰子是6個面上分別寫有數字1,2,3,4,5,6的小立方體,它任意兩對面上所寫的兩個數字之和為7.將這樣相同的幾個骰子按照相接觸的兩個面上的數字的積為6擺成一個幾何體,這個幾何體的三視圖如圖所示.已知圖中所標注的是部分面上的數字,則“*”所代表的數是( )
A. 2 B. 4 C. 5 D. 6
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】讀句畫圖:如圖,直線CD與直線AB相交于C,
根據下列語句畫圖:
(1)過點P作PQ∥CD,交AB于點Q;
(2)過點P作PR⊥CD,垂足為R;
(3)若∠DCB=120°,猜想∠PQC是多少度?并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,⊙O的半徑是2,直線l與⊙O相交于A、B兩點,M、N是⊙O上的兩個動點,且在直線l的異側,若∠AMB=45°,則四邊形MANB面積的最大值是( )
A.2
B.4
C.4
D.8
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形中,,,平分,平分,交于點,交于點,與是否平行?為什么?
對于上述問題,小紅給出了解答過程,請你在以下解答過程的括號內填上適當的內容
解:
理由如下:
,
.
∵四邊形的內角和為360°,
∴( ① )+( ② )=180°,
∵平分,平分,
.
.
又, ( ③ )
,
. ( ④ )
.( ⑤ )
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,△ABC中,∠BAC=90°,點D在BC邊上,且BD=BA,過點B畫AD的垂線交AC于點O,以O為圓心,AO為半徑畫圓.
(1)求證:BC是⊙O的切線;
(2)若⊙O的半徑為8,tan∠C= ,求線段AB的長,sin∠ADB的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com