【題目】學生在操場上利用三角函數(shù)測量旗桿AB的高,直線l為水平地面,兩個同學把30°的三角板和量角器按如圖所示的方式垂直放在地面上,量角器的零刻度線與地面重合,此時旗桿頂部B的影子恰好落在三角形板的頂點D處和量角器37°的刻度C處,已知三角形板的邊DE=60厘米,量角器的半徑r=25厘米,量角器的圓心O到A的距離為5米.
(1)則∠AOC=°(直接寫出答案)
(2)求旗桿AB的高度(精確到0.1米,參考數(shù)據(jù)sin37°≈0.6,cos37°≈0.8,tan37°≈0.75, ≈1.73)
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,點為坐標原點,點 為第一象限內(nèi)一點,點在軸正半軸上,且.
(1)求點的坐標;
(2)動點以每秒2個單位長度的速度,從點出發(fā),沿軸正半軸勻速運動,設(shè)點的運動時間為秒,的面積為,請用含有的式子表示,并直接寫出的取值范圍;
(3)如圖2,在(2)的條件下,點坐標為,連接,過點作軸的垂線交于點,過點 作軸的平行線,在點的運動過程中,直線上是否存在一點,使是以為腰的等腰直角三角形?若存在,求出點坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠ABE=∠ACD=Rt∠,AE=AD,∠ABC=∠ACB.求證:∠BAE=∠CAD.
請補全證明過程,并在括號里寫上理由.
證明:在△ABC中,
∵∠ABC=∠ACB
∴AB= ( )
在Rt△ABE和Rt△ACD中,
∵ =AC, =AD
∴Rt△ABE≌Rt△ACD( )
∴∠BAE=∠CAD( )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠ABC=30°,AB=6,點D是BC上一動點,連接AD,將△ACD沿AD折疊,點C落在點C1處,連接C1B,則BC1的最小值為( )
A.2
B.3
C.3
D.2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場二樓擺出一臺游戲裝置如圖所示,小球從最上方入口處投入,每次遇到黑色障礙物,等可能地向左或向右邊落下.
(1)若樂樂投入一個小球,則小球落入B區(qū)域的概率為 .
(2)若樂樂先后投兩個小球,求兩個小球同時落在A區(qū)域的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】完成下面的證明
如圖,FG//CD,∠1=∠3,∠B=50°,求∠BDE的度數(shù).
解:∵FG//CD (已知)
∴∠2=_________(____________________________)
又∵∠1=∠3,
∴∠3=∠2(等量代換)
∴BC//__________(_____________________________)
∴∠B+________=180°(______________________________)
又∵∠B=50°
∴∠BDE=________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,且、、.將其平移后得到,若的對應(yīng)點是,,的對應(yīng)點的坐標是.
(1)在平面直角坐標系中畫出和;
(2)此次平移也可看作向_________平移________個單位長度,再向__________平移了________個單位長度得到;
(3)求的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】兩塊等腰直角三角形紙片AOB和COD按圖1所示放置,直角頂點重合在點O處,AB=25,CD=17.保持紙片AOB不動,將紙片COD繞點O逆時針旋轉(zhuǎn)α(0°<α<90°)角度,如圖2所示.
(1)利用圖2證明AC=BD且AC⊥BD;
(2)當BD與CD在同一直線上(如圖3)時,求AC的長和α的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com