【題目】已知拋物線y=ax2+bx+c(a<0)的對稱軸為x=-1,與x軸的一個交點為(2,0).若關于x的一元二次方程ax2+bx+c=p(p>0)有整數根,則p的值有( )
A. 2個B. 3個C. 4個D. 5個
【答案】B
【解析】
根據題意可知一元二次方程ax2+bx+c=p(p>0)的根應為整數,通過拋物線y=ax2+bx+c(a<0)的對稱軸為x=-1,與x軸的一個交點為(2,0).可以畫出大致圖象判斷出直線y=p(0<p≤-9a),觀察圖象當0<y≤-9a時,拋物線始終與x軸相交于(-4,0)于(2,0).故自變量x的取值范圍為-4<x<2.所以x可以取得整數-3,-2,-1,0,1,共5個.由于x=-3與x=1,x=-2與x=0關于對稱軸直線x=-1對稱,所以x=-3與x=1時對應一條平行于x軸的直線,x=-2與x=0時對應一條平行于x軸的直線,x=-1時對應一條平行于x軸且過拋物線頂點的直線,從而確定y=p時,p的值應有3個.
解:∵拋物線y=ax2+bx+c(a<0)的對稱軸為x=-1,
∴=-1,解得b=2a.
又∵拋物線y=ax2+bx+c(a<0)與x軸的一個交點為(2,0).
把(2,0)代入y=ax2+bx+c得,0=4a+4a+c,
解得,c=-8a.
∴y=ax2+2ax-8a(a<0),
對稱軸h=-1,最大值k==-9a.如圖所示,
頂點坐標為(-1,-9a),
令ax2+2ax-8a=0,
即x+2x-8=0,
解得x=-4或x=2,
∴當a<0時,拋物線始終與x軸交于(-4,0)與(2,0).
∴ax2+bx+c=p
即常函數直線y=p,由p>0,
∴0<y≤-9a,
由圖象得當0<y≤-9a時,-4<x<2,其中x為整數時,x=-3,-2,-1,0,1,
∴一元二次方程ax2+bx+c=p(p>0)的整數解有5個.
又∵x=-3與x=1,x=-2與x=0關于直線x=-1軸對稱,
當x=-1時,直線y=p恰好過拋物線頂點.
所以p值可以有3個.
故選:B.
科目:初中數學 來源: 題型:
【題目】如圖,直線y=-x+2分別交x軸、y軸于點A,B,點D在BA的延長線上,OD的垂直平分線交線段AB于點C.若△OBC和△OAD的周長相等,則OD的長是( )
A. 2B. 2C. D. 4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知正方形ABCD,E是AB延長線上一點,F是DC延長線上一點,且滿足BF=EF,將線段EF繞點F順時針旋轉90°得FG,過點B作FG的平行線,交DA的延長線于點N,連接NG.
求證:BE=2CF;
試猜想四邊形BFGN是什么特殊的四邊形,并對你的猜想加以證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知開口向下的拋物線y=ax2﹣2ax+3與x軸的交點為A、B兩點(點A在點B的左邊),與y軸的交點為C,OC=3OA
(1)請直接寫出該拋物線解析式;
(2)如圖,D為拋物線的頂點,連接BD、BC,P為對稱軸右側拋物線上一點.若∠ABD=∠BCP,求點P的坐標
(3)在(2)的條件下,M、N是拋物線上的動點.若∠MPN=90°,直線MN必過一定點,請求出該定點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某醫(yī)藥研究所開發(fā)一種新的藥物,據監(jiān)測,如果成年人按規(guī)定的劑量服用,服藥后2小時,每毫升血液中的含藥量達到最大值,之后每毫升血液中的含藥量逐漸衰減.若一次服藥后每毫升血液中的含藥量y(單位:微克)與服藥后的時間t(單位:小時)之間近似滿足某種函數關系,下表是y與t的幾組對應值,其部分圖象如圖所示.
t | 0 | 1 | 2 | 3 | 4 | 6 | 8 | 10 | … |
y | 0 | 2 | 4 | 2.83 | 2 | 1 | 0.5 | 0.25 | … |
(1)在所給平面直角坐標系中,繼續(xù)描出上表中已列出數值所對應的點(t,y),并補全該函數的圖象;
(2)結合函數圖象,解決下列問題:
①某病人第一次服藥后5小時,每毫升血液中的含藥量約為_______微克;若每毫升血液中含藥量不少于0.5微克時治療疾病有效,則第一次服藥后治療該疾病有效的時間共持續(xù)約_______小時;
②若某病人第一次服藥后8小時進行第二次服藥,第二次服藥對血液中含藥量的影響與第一次服藥相同,則第二次服藥后2小時,每毫升血液中的含藥量約為_______微克.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,OA⊥OB,AB⊥x軸于點C,點A(,1)在反比例函數y=的圖像上.
(1)k= ;
(2)在x軸的負半軸上存在一點 P ,使得S△AOP=S△AOB,求點P的坐標;
(3)若將△BOA繞點B按逆時針方向旋轉60°得到△BDE,直接寫出點E的坐標,并判斷點E是否在該反比例函數的圖像上,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AE平分∠BAC交⊙O于點E,∠ABC的平分線BF交AD于點F,交BC于點D.
(1)求證:BE=EF;
(2)若DE=4,DF=3,求AF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C為⊙O上一點,∠ABC的平分線交⊙O于點D,DE⊥BC于點E.
(1)試判斷DE與⊙O的位置關系,并說明理由;
(2)過點D作DF⊥AB于點F,若BE=3,DF=3,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+3與x軸交于A(1,0)、B(﹣3,0)兩點,與y軸交于點C,設拋物線的頂點為D.
(1)求該拋物線的解析式與頂點D的坐標.
(2)試判斷△BCD的形狀,并說明理由.
(3)若點E在x軸上,點Q在拋物線上.是否存在以B、C、E、Q為頂點且以BC為一邊的平行四邊形?若存在,直接寫出點Q的坐標;若不存在,請說明理由.
(4)探究坐標軸上是否存在點P,使得以P、A、C為頂點的三角形與△BCD相似?若存在,請直接寫出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com