若點P為線段AB的中點,M為PB上的一點,那么AM-BM與PM之間存在怎樣的等量關系?為什么?(根據(jù)要求畫出圖形)

答案:略
解析:

AMBM=2PM


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖1,在?ABCD中,AO⊥BC,垂足為O,已知∠ABC=60°,BO=2,AO=2
3

(1)求線段AB的長;
(2)如圖2,點E為線段AB的中點,過點E的直線FG與CB的延長線交于點F,與射線AD交于點G,連接OE,以OE所在直線為對稱軸,△OEF經(jīng)軸對稱變換后得到△OEF′,記直線EF′與射線AD的交點為H.
①當點G在點H的左側時,求證:△AEG∽△AHE;
②若HG=6,求AG的長.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

9、下了四句話中正確的是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)己知:如圖,在Rt△ACB中,∠ACB=90°,以AC為直徑作⊙0交AB于點D.
(1)若tan∠ABC=
34
,AC=6,求線段BD的長.
(2)若點E為線段BC的中點,連接DE.求證:DE是⊙0的切線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•黃石)如圖1,點C將線段AB分成兩部分,如果
AC
AB
=
BC
AC
,那么稱點C為線段AB的黃金分割點.某數(shù)學興趣小組在進行課題研究時,由黃金分割點聯(lián)想到“黃金分割線”,類似地給出“黃金分割線”的定義:直線l將一個面積為S的圖形分成兩部分,這兩部分的面積分別為S1、S2,如果
S1
S
=
S2
S1
,那么稱直線l為該圖形的黃金分割線.
(1)如圖2,在△ABC中,∠A=36°,AB=AC,∠C的平分線交AB于點D,請問點D是否是AB邊上的黃金分割點,并證明你的結論;
(2)若△ABC在(1)的條件下,如圖3,請問直線CD是不是△ABC的黃金分割線,并證明你的結論;
(3)如圖4,在直角梯形ABCD中,∠D=∠C=90°,對角線AC、BD交于點F,延長AB、DC交于點E,連接EF交梯形上、下底于G、H兩點,請問直線GH是不是直角梯形ABCD的黃金分割線,并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△ABC中,AB=AC,∠A=36°,CE平分∠ACB交AB于點E,
(1)試說明點E為線段AB的黃金分割點;
(2)若AB=4,求BC的長.

查看答案和解析>>

同步練習冊答案