【題目】如圖,把Rt△ABC放在平面直角坐標(biāo)系內(nèi),其中∠CAB=90°,BC=5,點(diǎn)A,B的坐標(biāo)分別為(1,0),(4,0),將△ABC沿軸向右平移,當(dāng)點(diǎn)C落在直線上時(shí),線段BC掃過的面積為( )
A. 16B. 8C. 8D. 4
【答案】A
【解析】
先計(jì)算出AB=3,再利用勾股定理計(jì)算出AC=4,從而得到C(1,4),由于△ABC沿x軸向右平移,C點(diǎn)的縱坐標(biāo)不變,則可把y=4代入y=2x-6,解得x=5,于是得到當(dāng)點(diǎn)C落在直線y=2x-6上時(shí),線段AC向右平移了5-1=4個(gè)單位,然后根據(jù)矩形的面積公式求解即可.
∵點(diǎn)A、B的坐標(biāo)分別為(1,0),(4,0),
∴AB=3,
∵∠CAB=90°,BC=5,
∴AC==4,
∴C(1,4),
當(dāng)y=4時(shí),2x-6=4,解得x=5,
∴當(dāng)點(diǎn)C落在直線y=2x-6上時(shí),線段AC向右平移了5-1=4個(gè)單位,
∴線段AC掃過的面積=4×4=16,
故選A.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A、B兩個(gè)碼頭分別在一條河的兩岸AC、BD上,河岸AC、BD均為東西走向,一艘客輪以每小時(shí)30千米的速度由A碼頭出發(fā)沿北偏東50°的方向航行至B碼頭,用時(shí)1.2小時(shí),求該河的寬度(結(jié)果精確到1千米)
【參考數(shù)據(jù):sin50°=0.77,cos50°=0.64,tan50°=1.20】
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市組織學(xué)術(shù)研討會(huì),需租用客車接送參會(huì)人員往返賓館和觀摩地點(diǎn),客車租賃公司現(xiàn)有座和座兩種型號的客車可供租用.
(1)已知座的客車每輛每天的租金比座的貴元,會(huì)務(wù)組第一天在這家公司租了輛座和輛座的客車.一天的租金為元,求座和座的客車每輛每天的租金各是多少元?
(2)由于第二天參會(huì)人員發(fā)生了變化,因此會(huì)務(wù)紐需重新確定租車方案.
方案1:若只租用座的客車,會(huì)有一輛客車空出個(gè)座位;
方案2:若只租用座客車,正好坐滿且比只租用座的客車少用兩輛.
①請計(jì)算方案1、2的費(fèi)用;
②從經(jīng)濟(jì)角度考慮,還有方案3嗎?如果你是會(huì)務(wù)紐負(fù)責(zé)人,應(yīng)如何確定最終租車方案,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】臺(tái)風(fēng)是一種自然災(zāi)害,它以臺(tái)風(fēng)中心為圓心,在周圍數(shù)十千米范圍內(nèi)形氣旋風(fēng)暴,有極強(qiáng)的破壞力,此時(shí)某臺(tái)風(fēng)中心在海域B處,在沿海城市A的正南方向240千米,其中心風(fēng)力為12級,每遠(yuǎn)離臺(tái)風(fēng)中心25千米,臺(tái)風(fēng)就會(huì)減弱一級,如圖所示,該臺(tái)風(fēng)中心正以20千米/時(shí)的速度沿北偏東30°方向向C移動(dòng),且臺(tái)風(fēng)中心的風(fēng)力不變,若城市所受風(fēng)力達(dá)到或超過4級,則稱受臺(tái)風(fēng)影響. 試問:
(1)A城市是否會(huì)受到臺(tái)風(fēng)影響?請說明理由.
(2)若會(huì)受到臺(tái)風(fēng)影響,那么臺(tái)風(fēng)影響該城市的持續(xù)時(shí)間有多長?
(3)該城市受到臺(tái)風(fēng)影響的最大風(fēng)力為幾級?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AB是直徑,⊙O的切線PC交BA的延長線于點(diǎn)P,OF∥BC交AC于點(diǎn)E,交PC于點(diǎn)F,連接AF;
(1)判斷AF與⊙O的位置關(guān)系并說明理由.
(2)若⊙O的半徑為4,AF=3,求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,直線AC∥BD,連接AB,直線AC、BD及線段AB把平面分成①、②、③、④四個(gè)部分,規(guī)定:線上各點(diǎn)不屬于任何部分.當(dāng)動(dòng)點(diǎn)P落在某個(gè)部分時(shí),連接PA、PB,構(gòu)成∠PAC、∠APB、∠PBD三個(gè)角(提示:有公共端點(diǎn)的兩條重合的射線所組成的角是0°).
(1)當(dāng)動(dòng)點(diǎn)P落在第①部分時(shí),求證:∠APB=∠PAC+∠PBD.
(2)當(dāng)動(dòng)點(diǎn)P落在第②部分時(shí),∠APB=∠PAC+∠PBD是否成立(直接回答成立或不成立);
(3)當(dāng)動(dòng)點(diǎn)P在第③部分時(shí),全面探究∠PAC、∠APB、∠PBD之間的關(guān)系,并寫出動(dòng)點(diǎn)P的具體位置和相應(yīng)的結(jié)論.選擇其中一種結(jié)論加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,E、F是四邊形ABCD的對角線AC上的兩點(diǎn),AF=CE,DF=BE,DF∥BE.
求證:(1)△AFD≌△CEB.(2)四邊形ABCD是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】三個(gè)城市在同一直線上(市在兩市之間),甲、乙兩車分別從市、市同時(shí)出發(fā)沿著直線公路相向而行,兩車均保持勻速行駛,已知甲車的速度大于乙車的速度,且當(dāng)甲車到達(dá)市時(shí),甲、乙兩車都停止運(yùn)動(dòng),甲、乙兩車到市的距離之和(千米)與甲車行駛的時(shí)間(小時(shí))之間的關(guān)系如圖所示,則當(dāng)乙車到達(dá)市時(shí),甲車離市還有_______千米.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com