【題目】如圖所示,直線(xiàn)ACBD,連接AB,直線(xiàn)AC、BD及線(xiàn)段AB把平面分成①、②、③、④四個(gè)部分,規(guī)定:線(xiàn)上各點(diǎn)不屬于任何部分.當(dāng)動(dòng)點(diǎn)P落在某個(gè)部分時(shí),連接PA、PB,構(gòu)成∠PAC、∠APB、∠PBD三個(gè)角(提示:有公共端點(diǎn)的兩條重合的射線(xiàn)所組成的角是0°).

1)當(dāng)動(dòng)點(diǎn)P落在第①部分時(shí),求證:∠APB=∠PAC+∠PBD

2)當(dāng)動(dòng)點(diǎn)P落在第②部分時(shí),∠APB=∠PAC+∠PBD是否成立(直接回答成立或不成立);

3)當(dāng)動(dòng)點(diǎn)P在第③部分時(shí),全面探究∠PAC、∠APB、∠PBD之間的關(guān)系,并寫(xiě)出動(dòng)點(diǎn)P的具體位置和相應(yīng)的結(jié)論.選擇其中一種結(jié)論加以證明.

【答案】(1)證明見(jiàn)解析;(2)不成立;(3)證明見(jiàn)解析

【解析】

1)如圖,延長(zhǎng)BP交直線(xiàn)AC于點(diǎn)E,由ACBD,可知∠PEA=PBD.由∠APB=PAE+PEA,可知∠APB=PAC+PBD;

2)過(guò)點(diǎn)PAC的平行線(xiàn),根據(jù)平行線(xiàn)的性質(zhì)解答;

3)根據(jù)P的不同位置,分①當(dāng)動(dòng)點(diǎn)P在射線(xiàn)BA的右側(cè)時(shí),②當(dāng)動(dòng)點(diǎn)P在射線(xiàn)BA上時(shí),③當(dāng)動(dòng)點(diǎn)P在射線(xiàn)BA的左側(cè)時(shí),三種情況討論.

解:(1)如圖所示.延長(zhǎng)BP交直線(xiàn)AC于點(diǎn)E

因?yàn)?/span>ACBD,所以∠PEA=∠PBD

因?yàn)椤?/span>APB=∠PAE+PEA,所以∠APB=∠PAC+PBD

2)不成立.  

過(guò)PPMAC,

ACBD,

ACPMBD

∴∠PAC+APM=180°,∠PBD+BPM=180°,

∴∠APB+PAC+PBD=360°,而不能推出∠APB=PAC+PBD

故不成立;

3)①當(dāng)動(dòng)點(diǎn)P在射線(xiàn)BA的右側(cè)時(shí),結(jié)論是∠PBD=PAC+APB

②當(dāng)動(dòng)點(diǎn)P在射線(xiàn)BA上時(shí),結(jié)論是∠PBD=∠PAC+APB,或∠PAC=∠PBD+APB或∠APB0°,∠PAC=PBD(任寫(xiě)一個(gè)即可).

③當(dāng)動(dòng)點(diǎn)P在射線(xiàn)BA的左側(cè)時(shí),結(jié)論是∠PAC=APB+PBD

選擇①證明:

如圖1所示,連接PA,連接PBAC于點(diǎn)M

因?yàn)?/span>ACBD,所以∠PMC=∠PBD

又因?yàn)椤?/span>PMC=∠PAM十∠APM,所以∠PBD=∠PAC+APB

選擇②證明:如圖2所示.因?yàn)辄c(diǎn)P在射線(xiàn)BA上,所以∠APB0°.

因?yàn)?/span>ACBD,所以∠PBD=∠PAC

所以∠PBD=∠PAC+∠APB或∠PAC=PBD+APB或∠APB0°,∠PAC=PBD

選擇③證明:如答圖3所示,連接PA,連接PBAC于點(diǎn)F

因?yàn)?/span>ACBD,所以∠PFA=∠PBD

因?yàn)椤?/span>PAC=∠APF+PFA,所以∠PAC=∠APF+PBD

所以∠PAC=APB+PBD

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB=3,AD=4,點(diǎn)P從點(diǎn)A出發(fā),沿折線(xiàn)AC﹣CB向終點(diǎn)B運(yùn)動(dòng),點(diǎn)P在AC上的速度為每秒2個(gè)單位長(zhǎng)度,在CB上的速度為每秒1個(gè)單位長(zhǎng)度,同時(shí),點(diǎn)Q從點(diǎn)A出發(fā),沿AC以每秒1個(gè)單位長(zhǎng)度的速度向終點(diǎn)C運(yùn)動(dòng),當(dāng)點(diǎn)Q到達(dá)終點(diǎn)時(shí),點(diǎn)P也隨之停止.過(guò)點(diǎn)P作PM⊥AD于點(diǎn)M,連接QM,以PM、QM為鄰邊作PMQN,設(shè)PMQN與矩形ABCD重疊部分圖形的周長(zhǎng)為d(長(zhǎng)度單位),點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(秒)(t>0)

(1)求AC的長(zhǎng)
(2)用含t的代數(shù)式表示線(xiàn)段CP的長(zhǎng).
(3)當(dāng)點(diǎn)P在線(xiàn)段AC上時(shí),求d與t之間的函數(shù)關(guān)系式.
(4)經(jīng)過(guò)點(diǎn)N的直線(xiàn)將矩形ABCD的面積平分,若該直線(xiàn)同時(shí)將PMQN的面積分成1:3的兩部分,直接寫(xiě)出此時(shí)t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知平行四邊形ABCD,ACBD相交于點(diǎn)O,AB=4,AC=6,BD=10.(1)求∠ACD的度數(shù);(2)求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,把RtABC放在平面直角坐標(biāo)系內(nèi),其中∠CAB90°,BC5,點(diǎn)A,B的坐標(biāo)分別為(1,0),(4,0),將△ABC沿軸向右平移,當(dāng)點(diǎn)C落在直線(xiàn)上時(shí),線(xiàn)段BC掃過(guò)的面積為( )

A. 16B. 8C. 8D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知A,B是拋物線(xiàn)y=ax2(a>0)上兩個(gè)不同的點(diǎn),其中A在第二象限,B在第一象限.
(1)如圖1所示,當(dāng)直線(xiàn)AB與x軸平行,∠AOB=90°,且AB=2時(shí),求此拋物線(xiàn)的解析式和A,B兩點(diǎn)的橫坐標(biāo)的乘積;

(2)如圖2所示,在(1)所求得的拋物線(xiàn)上,當(dāng)直線(xiàn)AB與x軸不平行,∠AOB仍為90°時(shí),求證:A、B兩點(diǎn)橫坐標(biāo)的乘積是一個(gè)定值;

(3)在(2)的條件下,如果直線(xiàn)AB與x軸、y軸分別交于點(diǎn)P、D,且點(diǎn)B的橫坐標(biāo)為 .那么在x軸上是否存在一點(diǎn)Q,使△QDP為等腰三角形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】收集和整理數(shù)據(jù).

某中學(xué)七(1)班學(xué)習(xí)了統(tǒng)計(jì)知識(shí)后,數(shù)學(xué)老師要求每個(gè)學(xué)生就本班學(xué)生的上學(xué)方式進(jìn)行一次全面調(diào)查,如圖是一同學(xué)通過(guò)收集數(shù)據(jù)后繪制的兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中提供的信息,解答下列問(wèn)題:(每個(gè)學(xué)生只選擇1種上學(xué)方式).

(1)求該班乘車(chē)上學(xué)的人數(shù);

(2)將頻數(shù)分布直方圖補(bǔ)充完整;

(3)若該校七年級(jí)有1200名學(xué)生,能否由此估計(jì)出該校七年級(jí)學(xué)生騎自行車(chē)上學(xué)的人數(shù),為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為降低空氣污染,啟東飛鶴公交公司決定全部更換節(jié)能環(huán)保的燃?xì)夤卉?chē).計(jì)劃購(gòu)買(mǎi)A型和B型兩種公交車(chē)共10輛,其中每臺(tái)的價(jià)格,年載客量如表:

A

B

價(jià)格(萬(wàn)元/臺(tái))

a

b

年載客量(萬(wàn)人/年)

60

100

若購(gòu)買(mǎi)A型公交車(chē)1輛,B型公交車(chē)2輛,共需400萬(wàn)元;若購(gòu)買(mǎi)A型公交車(chē)2輛,B型公交車(chē)1輛,共需350萬(wàn)元.

(1)求ab的值;

(2)如果該公司購(gòu)買(mǎi)A型和B型公交車(chē)的總費(fèi)用不超過(guò)1200萬(wàn)元,且確保這10輛公交車(chē)在該線(xiàn)路的年均載客總和不少于680萬(wàn)人次.請(qǐng)你設(shè)計(jì)一個(gè)方案,使得購(gòu)車(chē)總費(fèi)用最少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,直線(xiàn)ABDC,點(diǎn)P為平面上一點(diǎn),連接APCP.

(1)如圖1,點(diǎn)P在直線(xiàn)AB、CD之間,當(dāng)∠BAP=60°,DCP=20°時(shí),求∠APC.

(2)如圖2,點(diǎn)P在直線(xiàn)AB、CD之間,∠BAP與∠DCP的角平分線(xiàn)相交于點(diǎn)K,寫(xiě)出∠AKC與∠APC之間的數(shù)量關(guān)系,并說(shuō)明理由.

(3)如圖3,點(diǎn)P落在CD外,∠BAP與∠DCP的角平分線(xiàn)相交于點(diǎn)K,AKC與∠APC有何數(shù)量關(guān)系?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將兩張寬度相等的矩形疊放在一起得到如圖所示的四邊形ABCD,則四邊形ABCD___________形,若兩張矩形紙片的長(zhǎng)都是10,寬都是4,那么四邊形ABCD周長(zhǎng)的最大值=___________

查看答案和解析>>

同步練習(xí)冊(cè)答案