【題目】如圖,在中,,,,點是的中點,點在邊上,將沿翻折,使得點落在點處,當時,那么的長為________________.
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在四邊形中,.點從點出發(fā),沿方向勻速運動,速度為;同時,點從點出發(fā),沿方向在的延長線上勻速運動,速度為;當點到達點時,點停止運動.過點作,交于點.連接.設運動時間為,解答下列問題:
連接,當為何值時,
設四邊形的面積為,求與的函數(shù)關系式;
在運動過程中,是否存在某一時刻,使四邊形的面積為四邊形面積的,若存在,求出的值;若不存在,請說明理由;
在運動過程中,是否存在某一時刻, 使若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1),在矩形ABCD中,AD=nAB,點M,P分別在邊AB,AD上(均不與端點重合),且AP=nAM,以AP和AM為鄰邊作矩形AMNP,連接AN,CN.
(問題發(fā)現(xiàn))
(1)如圖(2),當n=1時,BM與PD的數(shù)量關系為 ,CN與PD的數(shù)量關系為 .
(類比探究)
(2)如圖(3),當n=2時,矩形AMNP繞點A順時針旋轉,連接PD,則CN與PD之間的數(shù)量關系是否發(fā)生變化?若不變,請就圖(3)給出證明;若變化,請寫出數(shù)量關系,并就圖(3)說明理由.
(拓展延伸)
(3)在(2)的條件下,已知AD=4,AP=2,當矩形AMVP旋轉至C,N,M三點共線時,請直接寫出線段CN的長
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小強每天堅持引體向上鍛煉,他記錄了某一周每天做引體向上的個數(shù),如下表:
星期 | 日 | 一 | 二 | 三 | 四 | 五 | 六 |
個數(shù) | 11 | 12 | 13 | 12 |
其中有三天的個數(shù)墨汁覆蓋了,但小強己經(jīng)計算出這組數(shù)據(jù)唯一眾數(shù)是13,平均數(shù)是12,那么這組數(shù)據(jù)的方差是( )
A.B.C.1D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是☉的直徑,為☉上一點,是半徑上一動點(不與重合),過點作射線,分別交弦,于兩點,過點的切線交射線于點.
(1)求證:.
(2)當是的中點時,
①若,判斷以為頂點的四邊形是什么特殊四邊形,并說明理由;
②若,且,則_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB//CD,點E是直線AB上的點,過點E的直線l交直線CD于點F,EG平分∠BEF交CD于點G.在直線l繞點E旋轉的過程中,圖中∠1,∠2的度數(shù)可以分別是( )
A.30°,110°B.56°,70°C.70°,40°D.100°,40°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,折疊矩形,具體操作:①點為邊上一點(不與、重合),把沿所在的直線折疊,點的對稱點為點;②過點對折,折痕所在的直線交于點、點的對稱點為點.
(1)求證:∽.
(2)若,.
①點在移動的過程中,求的最大值.
②如圖2,若點恰在直線上,連接,求線段的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知二次函數(shù)的圖象經(jīng)過點.
(1)求的值和圖象的頂點坐標;
(2)點在該二次函數(shù)圖象上.
①當時,求的值;
②若點到軸的距離小于2,請根據(jù)圖象直接寫出的取值范圍;
③直接寫出點與直線的距離小于時的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,為測量河岸兩燈塔,之間的距離,小明在河對岸處測得燈塔在北偏東方向上,燈塔在東北方向上,小明沿河岸向東行走100米至處,測得此時燈塔在北偏西方向上,已知河兩岸.
(1)求觀測點到燈塔的距離;
(2)求燈塔,之間的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com