【題目】觀察下列算式:

1個(gè)式子:

2個(gè)式子:

3個(gè)式子:

4個(gè)式子:

1)可猜想第7個(gè)等式為

2)探索規(guī)律,若字母表示自然數(shù),請寫出第個(gè)等式

3)試證明你寫出的等式的正確性.

【答案】1;(2;(3)見解析

【解析】

1)根據(jù)一系列等式,得出一般性規(guī)律,寫出第四個(gè)等式即可;

2)把得出的規(guī)律用n表示即可.

3)證明左邊等于右邊即可.

1個(gè)式子:1×3+1=22;

2個(gè)式子:7×9+1=82

3個(gè)式子:25×27+1=262;

4個(gè)式子:79×81+1=802

5個(gè)式子:241×243+1=2402;

6個(gè)式子:727×729+1=7282

1)可猜到第7個(gè)式子為:2185×2187+1=21862;

2)若字母n表示自然數(shù),第n個(gè)式子為(3n-2×3n+1=3n-12;

3)證明:左邊=3n-2×3n+1=3n2-2×3n+1=3n-12=右邊.

故:(3n-2×3n+1=3n-12

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線的解析式為,直線交于點(diǎn),與軸交于點(diǎn),其中,滿足.

(1)求直線的解析式;

(2)在平面直角坐標(biāo)系中有一點(diǎn),若,則滿足的關(guān)系式是什么?

(3)已知平行于軸且位于軸左側(cè)有一動直線,分別與,交于點(diǎn),且點(diǎn)在點(diǎn)的下方,點(diǎn)軸上一動點(diǎn),且為等腰直角三角形,請直接寫出滿足條件的點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】看圖填空:已知如圖,AD⊥BCD,EG⊥BCG∠E=∠3, 求證:AD平分∠BAC

證明:∵AD⊥BCD,EG⊥BCG已知

∴∠ADC=90°,∠EGC=90°( )

∴∠ADC=∠EGC(等量代換)

∴AD∥EG( )

∴∠1=∠3( )

∠2=∠E( )

∵∠E=∠3已知) ∴∠1=∠2( )

∴AD平分∠BAC( ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合題
(1)一個(gè)兩位數(shù)十位數(shù)字為2,則從中,2、3、4、5、6、7、8、9中任選一個(gè)數(shù)作為個(gè)位數(shù)字組成兩位數(shù),組成的兩位數(shù)中是質(zhì)數(shù)的概率為多少?
(2)定義一種“十位上的數(shù)字比個(gè)位、百位上的數(shù)字都要小”的三位數(shù)叫做“V數(shù)”,如“837”就是一個(gè)“V數(shù)”,若十位上的數(shù)字3,則從2、4、5、6中任選兩數(shù).能與3組成“V數(shù)”的概率是多少?(請用列表法或樹狀圖)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,已知點(diǎn) Aa+b,2-a)與點(diǎn)Ba-5,b-2a)關(guān)于y軸對稱.

1)求A、B兩點(diǎn)的坐標(biāo);

2)如果點(diǎn)B關(guān)于x軸的對稱點(diǎn)是C,在圖中標(biāo)出點(diǎn)A、B、C,并求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某文具商店銷售功能相同的A、B兩種品牌的計(jì)算器,購買2個(gè)A品牌和3個(gè)B品牌的計(jì)算器共需156;購買3個(gè)A品牌和1個(gè)B品牌的計(jì)算器共需122

(1)求這兩種品牌計(jì)算器的單價(jià)

(2)學(xué)校開學(xué)前夕,該商店對這兩種計(jì)算器開展了促銷活動,具體辦法如下A品牌計(jì)算器按原價(jià)的八折銷售,B品牌計(jì)算器超出5個(gè)的部分按原價(jià)的七折銷售,設(shè)購買x個(gè)A品牌的計(jì)算器需要y1購買xx>5)個(gè)B品牌的計(jì)算器需要y2,分別求出y1、y2關(guān)于x的函數(shù)關(guān)系式;

(3)當(dāng)需要購買50個(gè)計(jì)算器時(shí),買哪種品牌的計(jì)算器更合算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知 CDAB,EFAB,垂足分別為DF,∠B+BDG180°, 試說明∠BEF=∠CDG.將下面的解答過程補(bǔ)充完整,并填空(填寫理由依據(jù)或數(shù)學(xué)式, 將答案按序號填在答題卷的對應(yīng)位置內(nèi))

證明:∵CDAB,EFAB

∴∠BFE=∠BDC90°

EFCD

∴∠BEF

又∵∠B+BDG180°

BCDG

∴∠CDG

∴∠CDG=∠BEF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀探究:12=,12+22=12+22+32=,

1)根據(jù)上述規(guī)律,求12+22+32+42+52的值;

2)你能用一個(gè)含有nn為正整數(shù))的算式表示這個(gè)規(guī)律嗎?請直接寫出這個(gè)算式(不計(jì)算);

3)根據(jù)你發(fā)現(xiàn)的規(guī)律,計(jì)算下面算式的值:62+72+82+92+102+112+122+132+142+152

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了了解九年級女生仰臥起坐訓(xùn)練情況,課外活動時(shí)間隨機(jī)抽取10名女生測試,成績?nèi)缦卤硭,那么這10名女生測試成績的眾數(shù)與中位數(shù)依次是( )

女生編號

1

2

3

4

5

6

7

8

9

10

成績/個(gè)

48

49

52

47

51

53

52

49

51

49


A.52,51
B.51,51
C.49,49
D.49,50

查看答案和解析>>

同步練習(xí)冊答案