如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交BC于點(diǎn)M,MN⊥AC于點(diǎn)N.
(1)求證:MN是⊙O的切線;
(2)若∠BAC=120°,AB=2,求圖中陰影部分的面積.
【考點(diǎn)】切線的判定;扇形面積的計(jì)算;解直角三角形.
【專題】幾何綜合題;壓軸題.
【分析】(1)有切點(diǎn),需連半徑,證明垂直,即可;
(2)求陰影部分的面積要把它轉(zhuǎn)化成S梯形ANMO﹣S扇形OAM,再分別求的這兩部分的面積求解.
【解答】(1)證明:連接OM.
∵OM=OB,
∴∠B=∠OMB.
∵AB=AC,
∴∠B=∠C.
∴∠OMB=∠C.
∴OM∥AC.
∵M(jìn)N⊥AC,
∴OM⊥MN.
∵點(diǎn)M在⊙O上,
∴MN是⊙O的切線.
(2)解:連接AM.
∵AB為直徑,點(diǎn)M在⊙O上,
∴∠AMB=90°.
∵AB=AC,∠BAC=120°,
∴∠B=∠C=30°.
∴∠AOM=60°.
又∵在Rt△AMC中,MN⊥AC于點(diǎn)N,
∴∠AMN=30°.
∴AN=AM•sin∠AMN=AC•sin30°•sin30°=.
∴MN=AM•cos∠AMN=AC•sin30°•cos30°=.
∴S梯形ANMO=,
S扇形OAM=,
∴S陰影==﹣.
【點(diǎn)評(píng)】本題考查的是切線的判定即利用圖形分割法求不規(guī)則圖形面積的思路.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
下列長(zhǎng)度的線段不能構(gòu)成直角三角形的是( )
A.8,15,17 B.1.5,2,3 C.6,8,10 D.5,12,13
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(2,4),B(1,1),C(4,3).
(1)請(qǐng)畫(huà)出△ABC關(guān)于x軸對(duì)稱的△A1B1C1,并寫(xiě)出點(diǎn)A1的坐標(biāo);
(2)請(qǐng)畫(huà)出△ABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°后的△A2BC2;
(3)求出(2)中C點(diǎn)旋轉(zhuǎn)到C2點(diǎn)所經(jīng)過(guò)的路徑長(zhǎng)(結(jié)果保留根號(hào)和π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
6月5日是世界環(huán)境日,其主題是“海洋存亡,匹夫有責(zé)”,目前全球海洋總面積約為36100萬(wàn)平方公里.用科學(xué)記數(shù)法表示為 平方公里.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
下列各式計(jì)算正確的是( )
A.x6÷x2=x4 B.x2•x3=x6 C.(﹣x2)4=x6 D.x2+x3=x5
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com