【題目】如圖,拋物線y=ax2 +bx+ 4與x軸的兩個交點分別為A(-4,0)、B(2,0),與y軸交于點C,頂點為D.E(1,2)為線段BC的中點,BC的垂直平分線與x軸、y軸分別交于F、G.
(1)求拋物線的函數(shù)解析式,并寫出頂點D的坐標;
(2)在直線EF上求一點H,使△CDH的周長最小,并求出最小周長;
(3)若點K在x軸上方的拋物線上運動,當K運動到什么位置時,
△EFK的面積最大?并求出最大面積.
【答案】(1)頂點D的坐標為(-1,)
(2)H(,)
(3)K(-,)
【解析】
(1)將A、B的坐標代入拋物線的解析式中,即可求出待定系數(shù)的值,進而可用配方法求出其頂點D的坐標;
(2)根據(jù)拋物線的解析式可求出C點的坐標,由于CD是定長,若△CDH的周長最小,那么CH+DH的值最小,由于EF垂直平分線段BC,那么B、C關于直線EF對稱,所以BD與EF的交點即為所求的H點;易求得直線BC的解析式,關鍵是求出直線EF的解析式;由于E是BC的中點,根據(jù)B、C的坐標即可求出E點的坐標;可證△CEG∽△COB,根據(jù)相似三角形所得的比例線段即可求出CG、OG的長,由此可求出G點坐標,進而可用待定系數(shù)法求出直線EF的解析式,由此得解;
(3)過K作x軸的垂線,交直線EF于N;設出K點的橫坐標,根據(jù)拋物線和直線EF的解析式,即可表示出K、N的縱坐標,也就能得到KN的長,以KN為底,F、E橫坐標差的絕對值為高,可求出△KEF的面積,由此可得到關于△KEF的面積與K點橫坐標的函數(shù)關系式,根據(jù)所得函數(shù)的性質即可求出其面積的最大值及對應的K點坐標.
(1)由題意,得解得,b=-1.
所以拋物線的解析式為,頂點D的坐標為(-1,).
(2)設拋物線的對稱軸與x軸交于點M.因為EF垂直平分BC,即C關于直線EG的對稱點為B,連結BD交于EF于一點,則這一點為所求點H,使DH+CH最小,即最小為
DH+CH=DH+HB=BD=.而.
∴△CDH的周長最小值為CD+DR+CH=.
設直線BD的解析式為y=k1x+b,則解得,b1= 3.
所以直線BD的解析式為y=x+ 3.
由于BC= 2,CE=BC∕2 =,Rt△CEG∽△COB,
得CE:CO=CG:CB,所以CG= 2.5,GO= 1.5.G(0,1.5).
同理可求得直線EF的解析式為y=x+.
聯(lián)立直線BD與EF的方程,解得使△CDH的周長最小的點H(,).
(3)設K(t,),xF<t<xE.過K作x軸的垂線交EF于N.
則KN=yK-yN=-(t+)=.
所以S△EFK=S△KFN+S△KNE=KN(t+ 3)+KN(1-t)= 2KN= -t2-3t+ 5 =-(t+)2+.
即當t=-時,△EFK的面積最大,最大面積為,此時K(-,).
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,E在AB上,、都為等腰直角三角形,,連接DB,以DE、DB為邊作平行四邊形DBFE,連接FC、DC.
(1)求證:;;
(2)將圖①中繞A點順時針旋轉,其它條件不變,如圖②,(1)中的結論是否成立?說明理由.
(3)將圖①中的繞A點順時針旋轉,,其它條件不變,當四邊形DBFE為矩形時,直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,△ABC的位置如圖所示(每個小方格都是邊長為1個單位長度的正方形).
(1)將△ABC沿x軸方向向左平移6個單位,畫出平移后得到的△A1B1C1;
(2)將△ABC繞著點A順時針旋轉90°,畫出旋轉后得到的△AB2C2,并直接寫出點B2、C2的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠ABC=60°,D是BC邊上的點,CD=1,將△ACD沿直線AD翻折,點C剛好落在AB邊上的點E處.若P是直線AD上的動點,則△PEB的周長的最小值是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】現(xiàn)有正方形ABCD和一個以O為直角頂點的三角板,移動三角板,使三角板的兩直角邊所在直線分別與直線BC,CD交于點M,N.
(1)如圖1,若點O與點A重合,則OM與ON的數(shù)量關系是__________________;
(2)如圖2,若點O在正方形的中心(即兩對角線的交點),則(1)中的結論是否仍然成立?請說明理由;
(3)如圖3,若點O在正方形的內部(含邊界),當OM=ON時,請?zhí)骄奎cO在移動過程中可形成什么圖形?
(4)如圖4是點O在正方形外部的一種情況.當OM=ON時,請你就“點O的位置在各種情況下(含外部)移動所形成的圖形”提出一個正確的結論.(不必說理)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】盒中有若干枚黑球和白球,這些球除顏色外無其他差別,現(xiàn)讓學生進行摸球試驗:每次摸出一個球,記下顏色后放回搖勻,重復進行這樣的試驗得到以下數(shù)據(jù):
摸棋的次數(shù)n | 100 | 200 | 300 | 500 | 800 | 1000 |
摸到黑棋的次數(shù)m | 38 | 79 | 121 | 196 | 322 | 398 |
摸到黑棋的頻率(精確到0.001) | 0.380 | 0.395 | 0.403 | 0.392 | 0.403 | 0.398 |
(1)根據(jù)表中數(shù)據(jù)估計,從盒中摸出一個球是白球的概率是_____(精確到0.01);
(2)若盒中黑球與白球共有5枚,某同學連續(xù)不放回地摸出兩個球,用樹狀圖或表格計算這兩個球顏色不同的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,對角線AC與BD交于點O.過點C作BD的平行線,過點D作AC的平行線,兩直線相交于點E.
(1)求證:四邊形OCED是矩形;
(2)若CE=1,DE=2,ABCD的面積是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,AB是⊙O的直徑,AD與⊙O相切于點A,DE與⊙O相切于點E,點C為DE延長線上一點,且CE=CB.
(1)求證:BC為⊙O的切線;
(2)若AB=4,AD=1,求線段CE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點A(﹣1,0),與y軸的交點B在(0,﹣2)和C(0,﹣1)之間(不包括這兩點),對稱軸為直線x=1,下列結論:①abc>0;②4a+2b+c>0;③4ac﹣b2<8a;④;⑤b<c.其中含所有正確結論的選項是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com