【題目】在△ABC中,AO=BO,直線MN經(jīng)過點(diǎn)O, 且AC⊥MN于C,BD⊥MN于D
(1) 當(dāng)直線MN繞點(diǎn)O旋轉(zhuǎn)到圖①的位置時(shí),求證:CD=AC+BD;
(2) 當(dāng)直線MN繞點(diǎn)O旋轉(zhuǎn)到圖②的位置時(shí),求證:CD=AC-BD;
(3) 當(dāng)直線MN繞點(diǎn)O旋轉(zhuǎn)到圖③的位置時(shí),試問:CD、AC、BD有怎樣的等量關(guān)系?請(qǐng)寫出這個(gè)等量關(guān)系,并加以證明。
【答案】(1)證明見解析;(2)證明見解析;(3)CD=BD-AC,證明見解析.
【解析】試題分析:(1)通過證明△ACO≌△ODB得到OC=BD,AC=OD,則CD=AC+BD;
(2)通過證明△ACO≌△ODB得到OC=BD,AC=OD,則CD=AC-BD;
(3)通過證明△ACO≌△ODB得到OC=BD,AC=OD,則CD=BD-AC.
試題解析:(1)如圖1,
∵△AOB中,∠AOB=90°,
∴∠AOC+∠BOD=90°,
直線MN經(jīng)過點(diǎn)O,且AC⊥MN于C,BD⊥MN于D,
∴∠ACO=∠BDO=90°
∴∠AOC+∠OAC=90°,
∴∠OAC=∠BOD,
在△ACO和△ODB中,
∴△ACO≌△ODB(AAS),
∴OC=BD,AC=OD,
∴CD=AC+BD;
(2)如圖2,
∵△AOB中,∠AOB=90°,
∴∠AOC+∠BOD=90°,
直線MN經(jīng)過點(diǎn)O,且AC⊥MN于C,BD⊥MN于D,
∴∠ACO=∠BDO=90°
∴∠AOC+∠OAC=90°,
∴∠OAC=∠BOD,
在△ACO和△ODB中,
,
∴△ACO≌△ODB(AAS),
∴OC=BD,AC=OD,
∴CD=OD﹣OC=AC﹣BD,即CD=AC﹣BD.
(3)如圖3,
∵△AOB中,∠AOB=90°,
∴∠AOC+∠BOD=90°,
直線MN經(jīng)過點(diǎn)O,且AC⊥MN于C,BD⊥MN于D,
∴∠ACO=∠BDO=90°
∴∠AOC+∠OAC=90°,
∴∠OAC=∠BOD,
在△ACO和△ODB中,
,
∴△ACO≌△ODB(AAS),
∴OC=BD,AC=OD,
∴CD=OC﹣OD=BD﹣AC,
即CD=BD﹣AC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,長(zhǎng)方形ABCD的面積為300cm2,長(zhǎng)和寬的比為3:2.在此長(zhǎng)方形內(nèi)沿著邊的方向能否并排裁出兩個(gè)面積均為147cm2的圓(π取3),請(qǐng)通過計(jì)算說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】.用長(zhǎng)為32米的籬笆圍一個(gè)矩形養(yǎng)雞場(chǎng).設(shè)圍成的矩形一邊長(zhǎng)為x米.
(1)當(dāng)x為何值時(shí),圍成的養(yǎng)雞場(chǎng)面積為60平方米;
(2)請(qǐng)問能否圍成面積為70平方米的養(yǎng)雞場(chǎng)?如果能,請(qǐng)求出其邊長(zhǎng);如果不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知一次函數(shù)與反比例函數(shù)的圖象相交于A(-4,-2),B(a,4)兩點(diǎn).
(1)求反比例函數(shù)的表達(dá)式和點(diǎn)B的坐標(biāo);
(2)根據(jù)圖象直接同答:當(dāng)白變量x在什么范圍時(shí),一次函數(shù)的值大于反比例函數(shù)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于零的說(shuō)法,下列正確的選項(xiàng)是( )
A. 零是最小的整數(shù) B. 零的相反數(shù)是零
C. 零與任何數(shù)相加得零 D. 兩數(shù)相乘得零,則這兩個(gè)數(shù)都為零
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了開闊學(xué)生的視野,積極組織學(xué)生參加課外讀書活動(dòng).在這次活動(dòng)中.“放飛夢(mèng)想”讀書小組協(xié)助老師隨機(jī)抽取本校的部分學(xué)生,調(diào)查他們最喜愛的圖書類別(圖書分為文學(xué)類、藝體類、科普類、其他類共四類),并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)你結(jié)合圖中的信息解答下列問題:
(1)求被調(diào)查的學(xué)生人數(shù);
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該校有1200名學(xué)生,試估計(jì)全校最喜愛文學(xué)類圖書的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(4分)寫出一個(gè)平面直角坐標(biāo)系中第三象限內(nèi)點(diǎn)的坐標(biāo):( , ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中放置了5個(gè)正方形,點(diǎn)B1(0,2)在y軸上,點(diǎn)C1,E1,E2,C2,E3,E4,C3在x軸上,C1的坐標(biāo)是(1, 0),B1C1∥B2C2∥B3C3.點(diǎn)A3到x軸的距離是.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在△ABC中,AB=AC=8,∠BAC=30°.將△ABC繞點(diǎn)A旋轉(zhuǎn),使點(diǎn)B落在原△ABC的點(diǎn)C處,此時(shí)點(diǎn)C落在點(diǎn)D處.延長(zhǎng)線段AD,交原△ABC的邊BC的延長(zhǎng)線于點(diǎn)E,那么線段DE的長(zhǎng)等于___________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com