如圖,在平面直角坐標(biāo)系xOy中,二次函數(shù)(a,b是常數(shù))的圖象與x軸交于點A(﹣3,0)和點B(1,0),與y軸交于點C.動直線y=t(t為常數(shù))與拋物線交于不同的兩點P、Q.

(1)求a和b的值;
(2)求t的取值范圍;
(3)若∠PCQ=90°,求t的值.

(1)
(2)t>﹣4
(3)t=﹣2

解析分析:(1)將點A、點B的坐標(biāo)代入二次函數(shù)解析式可求出a、b的值。
(2)根據(jù)二次函數(shù)及y=t,可得出方程,有兩個交點,可得△>0,求解t的范圍即可。
(3)證明△PDC∽△CDQ,利用相似三角形的對應(yīng)邊成比例,可求出t的值。
解:(1)將點A、點B的坐標(biāo)代入可得:,解得:
(2)拋物線的解析式為,直線y=t,
聯(lián)立兩解析式可得:x2+2x﹣3=t,即x2+2x﹣(3+t)=0,
∵動直線y=t(t為常數(shù))與拋物線交于不同的兩點,
∴△=4+4(3+t)>0,解得:t>﹣4。
(3)∵y=x2+2x﹣3=(x+1)2﹣4,
∴拋物線的對稱軸為直線x=1。
當(dāng)x=0時,y=﹣3,∴C(0,﹣3)。
設(shè)點Q的坐標(biāo)為(m,t),則P(﹣2﹣m,t)。
如圖,設(shè)PQ與y軸交于點D,

則CD=t+3,DQ=m,DP=m+2。
∵∠PCQ=∠PCD+∠QCD=90°,∠DPC+∠PCD=90°,∴∠QCD=∠DPC。
又∠PDC=∠QDC=90°,∴△QCD∽△CDP!,即。
整理得:t2+6t+9=m2+2m。
∵Q(m,t)在拋物線上,∴t=m2+2m﹣3,即m2+2m=t+3。
∴t2+6t+9=t+3,化簡得:t2+5t+6=0,解得t=﹣2或t=﹣3。
當(dāng)t=﹣3時,動直線y=t經(jīng)過點C,故不合題意,舍去。
∴t=﹣2。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知拋物線y=ax2+bx+c(a≠0)的頂點坐標(biāo)為(4,),且與y軸交于點C(0,2),與x軸交于A,B兩點(點A在點B的左邊).

(1)求拋物線的解析式及A,B兩點的坐標(biāo);
(2)在(1)中拋物線的對稱軸l上是否存在一點P,使AP+CP的值最。咳舸嬖,求AP+CP的最小值,若不存在,請說明理由;
(3)在以AB為直徑的⊙M相切于點E,CE交x軸于點D,求直線CE的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,拋物線y=x2+bx+c過點A(﹣4,﹣3),與y軸交于點B,對稱軸是x=﹣3,請解答下列問題:

(1)求拋物線的解析式.
(2)若和x軸平行的直線與拋物線交于C,D兩點,點C在對稱軸左側(cè),且CD=8,求△BCD的面積.
注:拋物線y=ax2+bx+c(a≠0)的對稱軸是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖所示,直線l:y=3x+3與x軸交于點A,與y軸交于點B.把△AOB沿y軸翻折,點A落到點C,拋物線過點B、C和D(3,0).

(1)求直線BD和拋物線的解析式.
(2)若BD與拋物線的對稱軸交于點M,點N在坐標(biāo)軸上,以點N、B、D為頂點的三角形與△MCD相似,求所有滿足條件的點N的坐標(biāo).
(3)在拋物線上是否存在點P,使SPBD=6?若存在,求出點P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知拋物線y=a(x﹣3)2+2經(jīng)過點(1,﹣2).
(1)求a的值;
(2)若點A(m,y1)、B(n,y2)(m<n<3)都在該拋物線上,試比較y1與y2的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在直角坐標(biāo)系中有一直角三角形AOB,O為坐標(biāo)原點,OA=1,tan∠BAO=3,將此三角形繞原點O逆時針旋轉(zhuǎn)90°,得到△DOC,拋物線經(jīng)過點A、B、C.

(1)求拋物線的解析式;
(2)若點P是第二象限內(nèi)拋物線上的動點,其坐標(biāo)為t,
①設(shè)拋物線對稱軸l與x軸交于一點E,連接PE,交CD于F,求出當(dāng)△CEF與△COD相似時,點P的坐標(biāo);
②是否存在一點P,使△PCD得面積最大?若存在,求出△PCD的面積的最大值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,拋物線與直線交于C,D兩點,其中點C在y軸上,點D的坐標(biāo)為。點P是y軸右側(cè)的拋物線上一動點,過點P作PE⊥x軸于點E,交CD于點F.

(1)求拋物線的解析式;
(2)若點P的橫坐標(biāo)為m,當(dāng)m為何值時,以O(shè),C,P,F(xiàn)為頂點的四邊形是平行四邊形?請說明理由;
(3)若存在點P,使∠PCF=450,請直接寫出相應(yīng)的點P的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

已知反比例函數(shù)y=,下列結(jié)論中不正確的是(  )

A.圖象必經(jīng)過點(1,﹣5) B.y隨x的增大而增大 
C.圖象在第二、四象限內(nèi) D.若x>1,則﹣5<y<0 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

如圖,在平面直角坐標(biāo)系中,A(1,0),B(0,3),以AB為邊在第一象限作正方形ABCD,點D在雙曲線y=(k≠0)上,將正方形沿x軸負(fù)方向平移 m個單位長度后,點C恰好落在雙曲線上,則m的值是 (    )

A.2B.3C.D.

查看答案和解析>>

同步練習(xí)冊答案