【題目】已知,拋物線的部分圖象如圖,則下列說法:①對稱軸是直線;②當時,;③;④方程無實數(shù)根,其中正確的有________.
【答案】①②③
【解析】
①觀察圖象,可知對稱軸是x=1;
②由點(﹣1,0)及對稱軸x=1,可知拋物線經(jīng)過另一點(3,0),結合開口方向判斷y<0;
③函數(shù)的最小值是﹣4,說明y=ax2+bx+c≥﹣4,故ax2+bx+c+5>0,方程無實數(shù)根.
①對稱軸是直線x=1,正確;
②當﹣1<x<3時,函數(shù)圖象對應的點在x軸下方,因而y<0,正確;
③設二次函數(shù),把(-1,0),(0,3)代入得:,解得:,∴,∴函數(shù)的最小值是﹣4,因而函數(shù)值必須大于﹣4,因而方程ax2+bx+c+5=0無實數(shù)根,正確.
故正確的說法是①②③.
故答案為:①②③.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等腰△ABC中,AB=AC=10,BC=16,點F是邊BC上不與點B,C重合的一個動點,直線DE垂直平分BF,垂足為D.當△ACF是直角三角形時,線段BD的長為__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面材料,完成(1)-(3)題
數(shù)學課上,老師出示了這樣一道題:如圖, 中,,點P為邊AB上一點(不與A、B重合),過P作于Q,做QE∥AB交BC于點E,連接PE,將線段PE繞點P順時針旋轉90°到PF,連接QF,探究線段之間的數(shù)量關系并證明.
同學們經(jīng)過思考后,交流了自已的想法
小明:“通過觀察和度量,發(fā)現(xiàn)為直角.”
小偉:“我通過一線三直角的模型構造三角形全等可以解決問題.”
小強:“我構造等腰直角三角形,再利用全等三角形可以解決問題.”
老師:“若其他條件不變,PE=AC,就可以求出的值.”
(1)多少度?四邊形為什么特殊四邊形?(直接寫出答案)
(2)探究線段之間的數(shù)量關系并證明;
(3)若其他條件不變,PE=AC,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,王爺爺家院子里有一塊三角形田地ABC,AB=AC=5米,BC=6米,現(xiàn)打算把它開墾出一個矩形MNFE區(qū)域種植韭菜,△AMN區(qū)域種植芹菜,△CME和△BNF區(qū)域種植青菜(開墾土地面積損耗均忽略不計),其中點M,N分別在AC,AB上,點E,F(xiàn)在BC上,已知韭菜每平方米收益100元,芹菜每平方米收益60元,青菜每平方米收益40元,設CM=5x米,王爺爺?shù)氖卟丝偸找鏋?/span>W元.
(1)當矩形MNFE恰好為正方形時,求韭菜種植區(qū)域矩形MNFE的面積.
(2)若種植韭菜的收益等于另兩種蔬菜收益之和的2倍,求這時x的值.
(3)求王爺爺?shù)氖卟丝偸找鏋?/span>W關于x的函數(shù)表達式及W的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線與軸、軸分別交于點、,與雙曲線交于第一象限的點和第三象限的點,點的縱坐標為
求和的值;
求不等式:的解集
過軸上的點作平行于軸的直線,分別與直線和雙曲線交于點、,求的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,、分別是和的平分線,于,交于,于,交于,,,,,結論①;②;③;④.其中正確的有( )
A.4個B.3個C.2個D.1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(9分)某批發(fā)商以每件50元的價格購進800件T恤,第一個月以單價80元銷售,售出了200件;第二個月如果單價不變,預計仍可售出200件,批發(fā)商為增加銷售量,決定降價銷售,根據(jù)市場調查,單價每降低1元,可多售出10件,但最低單價應高于購進的價格;第二個月結束后,批發(fā)商將對剩余的T恤一次性清倉銷售,清倉是單價為40元,設第二個月單價降低元.
(1)填表:(不需化簡)
(2)如果批發(fā)商希望通過銷售這批T恤獲利9000元,那么第二個月的單價應是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).
(1)請畫出△ABC關于y軸對稱的△DEF(其中D,E,F分別是A,B,C的對應點,不寫畫法);
(2)直接寫出D,E,F三點的坐標:D( ),E( ),F( );
(3)在y軸上存在一點,使PC﹣PB最大,則點P的坐標為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在銳角△ABC中,AC=8,△ABC的面積為20,∠BAC的平分線交BC于點D,M,N分別是AD和AB上的動點,則BM+MN的最小值是________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com