【題目】如圖,等腰梯形ABCD中,AB∥DC,BE∥AD,梯形ABCD的周長為26,DE=4,則△BEC的周長為

【答案】18
【解析】解:∵AB∥DC,BE∥AD, ∴四邊形ADEB是平行四邊形,
∴AD=BE,AB=DE,
∵四邊形ABCD是等腰梯形,
∴AD=BC,
∵梯形ABCD的周長為26,
∴AD+CD+BC+AB=AD+DE+EC+BE+AB=BE+2DE+EC+BC=26,
∵DE=4,
∴BE+EC+BC=18.
所以答案是:18.
【考點(diǎn)精析】本題主要考查了平行四邊形的判定與性質(zhì)和等腰梯形的性質(zhì)的相關(guān)知識點(diǎn),需要掌握若一直線過平行四邊形兩對角線的交點(diǎn),則這條直線被一組對邊截下的線段以對角線的交點(diǎn)為中點(diǎn),并且這兩條直線二等分此平行四邊形的面積;等腰梯形的兩腰相等;同一底上的兩個角相等;兩條對角線相等才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】旅游公司在景區(qū)內(nèi)配置了50輛觀光車供游客租賃使用,假定每輛觀光車一天內(nèi)最多只能出租一次,且每輛車的日租金是x(元).發(fā)現(xiàn)每天的營運(yùn)規(guī)律如下:當(dāng)x不超過100元時,觀光車能全部租出;當(dāng)x超過100元時,每輛車的日租金每增加5元,租出去的觀光車就會減少1輛.已知所有觀光車每天的管理費(fèi)是1100元.當(dāng)每輛車的日租金為多少元時,每天的凈收入最多?(注:凈收入=租車收入﹣管理費(fèi))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某大樓的頂部樹有一塊廣告牌CD,小李在山坡的坡腳A處測得廣告牌底部D的仰角為60度,沿坡面AB向上走到B處測得廣告牌頂部C的仰角為45度,已知山坡AB的坡度i=1: ,AB=10米,AE=15米.

(1)求點(diǎn)B距水平面AE的高度BH;
(2)求廣告牌CD的高度.(保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,E為AB的中點(diǎn),F(xiàn)為AD上一點(diǎn),EF交AC于G,AF=2cm,DF=4cm,AG=3cm,則AC的長為(
A.9cm
B.14cm
C.15cm
D.18cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,李老師設(shè)計了一個探究杠桿平衡條件的實驗:在一個自制類似天平的儀器的左邊固定托盤A中放置一個重物,在右邊的活動托盤B(可左右移動)中放置一定質(zhì)量的砝碼,使得儀器左右平衡,改變活動托盤B與點(diǎn)O的距離x(cm),觀察活動托盤B中砝碼的質(zhì)量y(g)的變化情況.實驗數(shù)據(jù)記錄如下表:

x(cm)

10

15

20

25

30

y(g)

30

20

15

12

10


(1)把上表中(x,y)的各組對應(yīng)值作為點(diǎn)的坐標(biāo),在坐標(biāo)系中描出相應(yīng)的點(diǎn),用平滑曲線連接這些點(diǎn);
(2)觀察所畫的圖象,猜測y與x之間的函數(shù)關(guān)系,求出函數(shù)關(guān)系式并加以驗證;
(3)當(dāng)砝碼的質(zhì)量為24g時,活動托盤B與點(diǎn)O的距離是多少cm?
(4)當(dāng)活動托盤B往左移動時,應(yīng)往活動托盤B中添加還是減少砝碼?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在銳角△ABC中,AC是最短邊;以AC中點(diǎn)O為圓心, AC長為半徑作⊙O,交BC于E,過O作OD∥BC交⊙O于D,連接AE、AD、DC.
(1)求證:D是 的中點(diǎn);
(2)求證:∠DAO=∠B+∠BAD;
(3)若 ,且AC=4,求CF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,等腰直角三角形AOB的直角頂點(diǎn)A在第四象限,頂點(diǎn)B(0,﹣2),點(diǎn)C(0,1),點(diǎn)D在邊AB上,連接CD交OA于點(diǎn)E,反比例函數(shù) 的圖象經(jīng)過點(diǎn)D,若△ADE和△OCE的面積相等,則k的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC,以AB為直徑的O與BC相交于點(diǎn)D,與CA的延長線相交于點(diǎn)E,過點(diǎn)D作DF⊥AC于點(diǎn)F.

(1)試說明DF是⊙O的切線;
(2)若AC=3AE=6,求tanC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了增強(qiáng)學(xué)生體質(zhì),決定開放以下體育課外活動項目:A.籃球、B.乒乓球、C.跳繩、D.踢毽子.為了解學(xué)生最喜歡哪一種活動項目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計圖(如圖(1),圖(2)),
請回答下列問題:
(1)這次被調(diào)查的學(xué)生共有人;
(2)請你將條形統(tǒng)計圖補(bǔ)充完整;
(3)在平時的乒乓球項目訓(xùn)練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學(xué)任選兩名參加乒乓球比賽,求恰好選中甲、乙兩位同學(xué)的概率(用樹狀圖或列表法解答).

查看答案和解析>>

同步練習(xí)冊答案