【題目】旅游公司在景區(qū)內(nèi)配置了50輛觀光車供游客租賃使用,假定每輛觀光車一天內(nèi)最多只能出租一次,且每輛車的日租金是x(元).發(fā)現(xiàn)每天的營運規(guī)律如下:當(dāng)x不超過100元時,觀光車能全部租出;當(dāng)x超過100元時,每輛車的日租金每增加5元,租出去的觀光車就會減少1輛.已知所有觀光車每天的管理費是1100元.當(dāng)每輛車的日租金為多少元時,每天的凈收入最多?(注:凈收入=租車收入﹣管理費)
【答案】解:設(shè)每天的凈收入為y元, 當(dāng)0<x≤100時,y1=50x﹣1100,
∵y1隨x的增大而增大,
∴當(dāng)x=100時,y1的最大值為50×100﹣1100=3900;
當(dāng)x>100時,
y2=(50﹣ )x﹣1100
=﹣ x2+70x﹣1100
=﹣ (x﹣175)2+5025,
當(dāng)x=175時,y2的最大值為5025,
5025>3900,
故當(dāng)每輛車的日租金為175元時,每天的凈收入最多是5025元
【解析】由函數(shù)解析式是分段函數(shù),在每一段內(nèi)求出函數(shù)最大值,比較得出函數(shù)的最大值.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=5,AD=3,動點P滿足S△PAB= S矩形ABCD , 則點P到A、B兩點距離之和PA+PB的最小值為( )
A.
B.
C.5
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC,把△ABC繞A點沿順時針方向旋轉(zhuǎn)得到△ADE,連接BD,CE交于點F.
(1)求證:△AEC≌△ADB;
(2)若AB=2,∠BAC=45°,當(dāng)四邊形ADFC是菱形時,求BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,一個電子蜘蛛從點A出發(fā)勻速爬行,它先沿線段AB爬到點B,再沿半圓經(jīng)過點M爬到點C.如果準(zhǔn)備在M、N、P、Q四點中選定一點安裝一臺記錄儀,記錄電子蜘蛛爬行的全過程.設(shè)電子蜘蛛爬行的時間為x,電子蜘蛛與記錄儀之間的距離為y,表示y與x函數(shù)關(guān)系的圖象如圖2所示,那么記錄儀可能位于圖1中的( )
A.點M
B.點N
C.點P
D.點Q
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙三位同學(xué)用質(zhì)地、大小完全一樣的紙片分別制作一張卡片a、b、c,收集后放在一個不透明的箱子中,然后每人從箱子中隨機抽取一張.
(1)用列表或畫樹狀圖的方法表示三位同學(xué)抽到卡片的所有可能的結(jié)果;
(2)求三位同學(xué)中至少有一人抽到自己制作卡片的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c(a,b,c是常數(shù),a>0)的部分圖象如圖所示,直線x=1是它的對稱軸.若一元二次方程ax2+bx+c=0的一個根x1的取值范圍是2<x1<3,則它的另一個根x2的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列方程中,有兩個相等實數(shù)根的方程是( )
A.x(x﹣1)=0
B.x2﹣x+1=0
C.x2﹣2=0
D.x2﹣2x+1=0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,OA和OB是⊙O的半徑,并且OA⊥OB,P是OA上任一點,BP的延長線交⊙O于Q,過Q的⊙O的切線交OA的延長線于R.求證:RP=RQ.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com