【題目】在正方形ABCD中,AB6E為直線AB上一點(diǎn),EFAB交對角線ACF,點(diǎn)GAF中點(diǎn),連接CE,點(diǎn)MCE中點(diǎn),連接BM并延長交直線AC于點(diǎn)O

1)如圖1,E在邊AB上時(shí),   ,∠GBM   ;

2)將(1)中AEFA逆時(shí)針旋轉(zhuǎn)任意一銳角,其他條件不變,如圖2,(1)中結(jié)論是否任然成立?請加以證明.

3)若BE2,則CO長為   

【答案】(1),45°;(2)成立,理由見解析;(33

【解析】

1)連結(jié)EGGM.想辦法證明GBM是等腰直角三角形即可解決問題.
2)成立.延長GMH,使得MH=GM,連接BH,HC,延長HCAF的延長線于I,設(shè)AICDJ.利用全等三角形的性質(zhì)證明GBM是等腰直角三角形即可解決問題.
3)分兩種情形①點(diǎn)E在線段AB上.②點(diǎn)EAB的延長線上,分別求解即可解決問題.

解:(1)連結(jié)EG、GM

∵四邊形ABCD是正方形,

∴∠ABC90°,∠CAB=∠ACB45°

EFAB,

∴∠AEF90°,

∴∠EAF=∠EFA45°,

AGGF

EGAF,

∴∠EGC90°

EMMC,

GMBMCE,

∴∠MCG=∠MGC,∠MBC=∠MCB,

∴∠BMG=∠BME+GME2BMC+2GCM2ACB90°

GMB為等腰直角三角形.

故答案為45°

2)成立.

理由:延長GMH,使得MHGM,連接BH,HC,延長HCAF的延長線于I,設(shè)AICDJ

EMMCGMMH,∠EMG=∠HMC,

∴△EMG≌△CMHSAS),

EGCH,∠EGM=∠MHC,

ECCH,

∴∠AGE=∠AIH90°,

AGEG,

AGCH,

∵∠D=∠I90°,∠AJD=∠CJI

∴∠ICD=∠IAD,

∵∠BAG+IAD90°,∠BCH+ICF90°

∴∠BCH=∠BAG,

BABC

∴△BAG≌△BCHSAS),

BGDH,∠ABG=∠CBH,

∴∠∠GBH=∠ABC90°

GBH是等腰直角三角形,

,∠GBM45°

3)當(dāng)EB上方時(shí),如圖31中,延長BOCDT

BECT

∴∠MEB=∠MCT,

∵∠EMB=∠CMT,EMCM

∴△EMB≌△CMTASA),

BECT2,

CTAB,

,
AC=6
OC=×6
CO=
當(dāng)EB下方時(shí)同法可得CO=3
綜上所述,OC的長為3
故答案為3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=ax+by=bx+a的圖象在同一坐標(biāo)系內(nèi)的大致位置正確的是( 。

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用如圖所示的卡片拼成一個(gè)長為(2a+3b),寬為(a+b)的長方形,則需要(1)型卡片、(2)型卡片和(3)型卡片的張數(shù)分別是(

A. 25,3B. 23,5C. 3,5,2D. 3,2,5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算下列各題

1)(x32.(﹣x43

2)(x5y4x4y3x3y3

3)(2a+12﹣(2a+1)(2a1

4102+×π3.140|302|

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系中,已知點(diǎn)A0,10),點(diǎn)Pm,10),連接APOP,將AOP沿直線OP翻折得到EOP(點(diǎn)A的對應(yīng)點(diǎn)為點(diǎn)E).若點(diǎn)Ex軸的距離不大于6,則m的取值范圍是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=x+4y軸于點(diǎn)A,與直線BC相交于點(diǎn)B-2,m),直線BCy軸交于點(diǎn)C0-2),與x軸交于點(diǎn)D

1)求點(diǎn)B坐標(biāo);

2)求ABC的面積

3)過點(diǎn)ABC的平行線交x軸于點(diǎn)E,求點(diǎn)E的坐標(biāo);

4)在(3)的條件下,點(diǎn)p是直線AB上一動點(diǎn)且在x軸上方,Q為直角坐標(biāo)平面內(nèi)一點(diǎn),如果以點(diǎn)D、E、PQ為頂點(diǎn)的平行四邊形的面積等于ABC面積請求出點(diǎn)P的坐標(biāo).并直接寫出點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC=26cmBC=20cm,DAB的中點(diǎn),過DDEACE,則DE的長為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,D、E分別為AB,AC邊上的中點(diǎn),連接DE,將△ADE繞點(diǎn)E旋轉(zhuǎn)180°得到△CFE,連接AF,AC

1)求證:四邊形ADCF是菱形;

2)若BC=8,AC=6,求四邊形ABCF的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 如圖,在平行四邊形ABCD中,EBC邊上一點(diǎn),連結(jié)AEBDAE=AB

1)求證:∠ABE=∠EAD;

2)若∠AEB=2∠ADB,求證:四邊形ABCD是菱形.

查看答案和解析>>

同步練習(xí)冊答案