【題目】如圖,直線y=2x+4與x軸、y軸分別交于點(diǎn)A、B,以OB為底邊在y軸右側(cè)作等腰△OBC,將△OBC沿y軸折疊,使點(diǎn)C恰好落在直線AB上,則點(diǎn)C的坐標(biāo)為( 。
A.(1,2)B.(4,2)C.(3,2)D.(﹣1,2)
【答案】A
【解析】
由直線y=2x+4與y軸交于點(diǎn)B,可得OB=4,再根據(jù)△OBC是以OB為底的等腰三角形,可得點(diǎn)C的縱坐標(biāo)為2,依據(jù)△OBC沿y軸折疊,使點(diǎn)C恰好落在直線AB上,即可得到點(diǎn)C的橫坐標(biāo)為1.
∵直線y=2x+4與y軸交于點(diǎn)B,
∴B(0,4),
∴OB=4,
又∵△OBC是以OB為底的等腰三角形,
∴點(diǎn)C的縱坐標(biāo)為2,
∵△OBC沿y軸折疊,使點(diǎn)C恰好落在直線AB上,
∴當(dāng)y=2時(shí),2=2x+4,
解得x=-1,
∴點(diǎn)C的橫坐標(biāo)為1,
∴點(diǎn)C的坐標(biāo)為(1,2),
故選A.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在某次訓(xùn)練中,甲、乙兩名射擊運(yùn)動(dòng)員各射擊10發(fā)子彈的成績統(tǒng)計(jì)圖如圖所示,對于本次訓(xùn)練,有如下結(jié)論:①S甲2>S乙2;②S甲2<S乙2;③甲的射擊成績比乙穩(wěn)定;④乙的射擊成績比甲穩(wěn)定,由統(tǒng)計(jì)圖可知正確的結(jié)論是( )
A.①③ B.①④ C.②③ D.②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,E為AC上一點(diǎn),且AE=BC,過點(diǎn)A作AD⊥CA,垂足為A,且AD=AC,AB、DE交于點(diǎn)F.試判斷線段AB與DE的數(shù)量關(guān)系和位置關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知射線AP是△ABC的外角平分線,連結(jié)PB、PC.
(1)如圖1,若BP平分∠ABC,且∠ACB=30°,寫出∠APB的度數(shù).
(2)如圖1,若P與A不重合,求證:AB+AC<PB+PC.
(3)如圖2,若過點(diǎn)P作PM⊥BA,交BA延長線于M點(diǎn),且∠BPC=∠BAC,求:的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線經(jīng)過點(diǎn)A(,0),B(,0),且與y軸相交于點(diǎn)C.
(1)求這條拋物線的表達(dá)式;
(2)求∠ACB的度數(shù);
(3)設(shè)點(diǎn)D是所求拋物線第一象限上一點(diǎn),且在對稱軸的右側(cè),點(diǎn)E在線段AC上,且DE⊥AC,當(dāng)△DCE與△AOC相似時(shí),求點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,A為x軸負(fù)半軸上的點(diǎn),B為y軸負(fù)半軸上的點(diǎn).
(1)如圖①,以A點(diǎn)為頂點(diǎn),AB為腰在第三象限作等腰Rt△ABC.若已知A(﹣2,0)B(0,﹣4),試求C點(diǎn)的坐標(biāo);
(2)如圖②,若點(diǎn)A的坐標(biāo)為(﹣2,0),點(diǎn)B的坐標(biāo)為(0,a),點(diǎn)D的縱坐標(biāo)為b,以B為頂點(diǎn),BA為腰作等腰Rt△ABD,當(dāng)B點(diǎn)沿y軸負(fù)半軸向下運(yùn)動(dòng)且其他條件都不變時(shí),求b﹣a的值;
(3)如圖③,E為x軸負(fù)半軸上的一點(diǎn),且OB=OE,OF⊥EB于點(diǎn)F,以OB為邊在第四象限作等邊△OBM,連接EM交OF于點(diǎn)N,探究EM-ON與EN的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在ABCD中,AC、BD交于點(diǎn)O,過點(diǎn)O作直線EF、GH,分別交ABCD的四條邊于E、G、F、H四點(diǎn),連接EG、GF、FH、HE.
(1)如圖①,四邊形EGFH的形狀是___;
(2)如圖②,當(dāng)EF⊥GH時(shí),四邊形EGFH的形狀是___;
(3)如圖③,在(2)的條件下,若AC=BD,四邊形EGFH的形狀是___;
(4)如圖④,在(3)的條件下,若AC⊥BD,四邊形EGFH的形狀是___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明參加某個(gè)智力競答節(jié)目,答對最后兩道單選題就順利通關(guān).第一道單選題有3個(gè)選項(xiàng),第二道單選題有4個(gè)選項(xiàng),這兩道題小明都不會,不過小明還有一個(gè)“求助”沒有用(使用“求助”可以讓主持人去掉其中一題的一個(gè)錯(cuò)誤選項(xiàng)).
(1)如果小明第一題不使用“求助”,那么小明答對第一道題的概率是 .
(2)如果小明將“求助”留在第二題使用,請用樹狀圖或者列表來分析小明順利通關(guān)的概率.
(3)從概率的角度分析,你建議小明在第幾題使用“求助”.(直接寫出答案)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com