【題目】如圖,一次函數(shù)y=﹣x+b的圖象與反比例函數(shù)y=的圖象交于A、B兩點,且A點坐標為(﹣2,1),一次函數(shù)交x軸于點C.
(1)試確定上述反比例函數(shù)和一次函數(shù)的表達式;
(2)求△AOB的面積;
(3)直接寫出使反比例函數(shù)大于一次函數(shù)的x的取值范圍.
【答案】(1)反比例函數(shù)解析式為y=﹣,一次函數(shù)解析式為y=﹣x﹣1;(2);(3)﹣2<x<0或x>1
【解析】
(1)把A(﹣2,1)代入y=﹣x+b中,求出b,得到一次函數(shù)解析式;然后把A(﹣2,1)代入y=中,求出m,得到反比例函數(shù)解析式;
(2)先求出直線y=﹣x﹣1與y軸的交點坐標,再聯(lián)立,求出點B的坐標,然后利用三角形面積公式計算△AOB的面積,即可;
(3)結合圖象寫出反比例函數(shù)圖象在一次函數(shù)圖象上方對應的自變量的范圍即可.
(1)把A(﹣2,1)代入y=﹣x+b,得2+b=1,解得:b=﹣1,
∴一次函數(shù)解析式為:y=﹣x﹣1;
把A(﹣2,1)代入y=,得:m=﹣2×1=﹣2,
∴反比例函數(shù)解析式為:y=﹣;
(2)當x=0時,y=﹣x﹣1=﹣1,則直線y=﹣x﹣1與y軸的交點坐標為(0,﹣1),
聯(lián)立,得:﹣=﹣x﹣1,
解得:,
∴B(1,-2),
∴△AOB的面積=×1×(2+1)=;
(3)根據函數(shù)圖象,反比例函數(shù)圖象在一次函數(shù)圖象上方所對應的自變量的范圍是:﹣2<x<0或x>1.
科目:初中數(shù)學 來源: 題型:
【題目】為了解某校九年級學生立定跳遠水平,隨機抽取該年級50名學生進行測試,并把測試成績(單位:m)繪制成不完整的頻數(shù)分布表和頻數(shù)分布直方圖.
請根據圖表中所提供的信息,完成下列問題:
(1)表中________,________,樣本成績的中位數(shù)落在證明見解析________范圍內;
(2)請把頻數(shù)分布直方圖補充完整;
(3)該校九年級共有1000名學生,估計該年級學生立定跳遠成績在范圍內的學生有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y1=kx+b與反比例函數(shù)y2=的圖象交于A(2,3),B(6,n)兩點,與x軸、y軸分別交于C,D兩點.
(1)求一次函數(shù)與反比例函數(shù)的解析式.
(2)求當x為何值時,y1>0.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)>0)的對稱軸與x軸交于點B,與直線l:交于點C,點A是該二次函數(shù)圖像與直線l在第二象限的交點,點D是拋物線的頂點,已知AC∶CO=1∶2,∠DOB=45°,△ACD的面積為2.
(1) 求拋物線的函數(shù)關系式;
(2) 若點P為拋物線對稱軸上的一個點,且∠POC=45°,求點P坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系,點 O 是原點,直線 y x 6分別交 x 軸,y 軸于點 B,A,經過點 A 的直線 y x b 交 x 軸于點 C.
(1)求 b 的值 ;
(2)點 D 是線段 AB 上的一個動點,連接 OD,過點 O 作 OE⊥OD 交 AC 于點 E,連接DE,將△ODE 沿 DE 折疊得到△FDE,連接 AF.設點 D 的橫坐標為 t,AF 的長為 d,當t> 3 時,求 d 與 t 之間的函數(shù)關系式(不要求寫出自變量 t 的取值范圍);
(3)在(2)的條件下,DE 交 OA 于點 G,且 tan∠AGD=3.點 H 在 x 軸上(點 H 在點O 的右側),連接 DH,EH,FH,當∠DHF=∠EHF 時,請直接寫出點 H 的坐標,不需要寫出解題過程.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了更好的治理西流湖水質,保護環(huán)境,市治污公司決定購買 10 臺污水處理設備.現(xiàn)有 A、B 兩種型號的設備,其中每臺的價格,月處理污水量如下表:
A 型 | B 型 | |
價格(萬元/臺) | a | b |
處理污水量(噸/月) | 240 | 200 |
經調查:購買一臺 A 型設備比購買一臺 B 型設備多 2 萬元,購買 2 臺 A 型設備比購買 3 臺 B 型設備少 6 萬元.
(1)求 a,b 的值;
(2)經預算:市治污公司購買污水處理設備的資金不超過 105 萬元,你認為該公司 有哪幾種購買方案;
(3)在(2)問的條件下,若每月要求處理西流湖的污水量不低于 2040 噸,為了節(jié) 約資金,請你為治污公司設計一種最省錢的購買方案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】請僅用無刻度的直尺完成下列畫圖,不寫畫法,保留畫圖痕跡.(用虛線表示畫圖過程,實線表示畫圖結果)
(1)如圖①,四邊形 ABCD 中,AB=AD,∠B=∠D,畫出四邊形 ABCD 的對稱軸 m;
(2)如圖②,四邊形 ABCD 中,AD∥BC,∠A=∠D,畫出 BC 邊的垂直平分線 n.
(3)如圖③,△ABC 的外接圓的圓心是點 O,D 是的中點,畫一條直線把△ABC 分成面積相等的兩部分.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】參照學習函數(shù)的過程方法,探究函數(shù)的圖像與性質,因為,即,所以我們對比函數(shù)來探究列表:
… | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | … | ||||
… | 1 | 2 | 4 | -4 | -2 | -1 | … | ||||||
… | 2 | 3 | 5 | -3 | -2 | 0 | … |
描點:在平面直角坐標系中以自變量的取值為橫坐標,以相應的函數(shù)值為縱坐標,描出相應的點如圖所示:
(1)請把軸左邊各點和右邊各點分別用一條光滑曲線,順次連接起來;
(2)觀察圖象并分析表格,回答下列問題:
①當時,隨的增大而______;(“增大”或“減小”)
②的圖象是由的圖象向______平移______個單位而得到的;
③圖象關于點______中心對稱.(填點的坐標)
(3)函數(shù)與直線交于點,,求的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某游樂場新推出了一個“極速飛車”的項目.項目有兩條斜坡軌道以滿足不同的難度需求,游客可以乘坐垂直升降電梯AB自由上下選擇項目難度.其中斜坡軌道BC的坡度(或坡比)為i=1:2,BC=12米,CD=8米,∠D=36°,(其中點A、B、C、D均在同一平面內)則垂直升降電梯AB的高度約為( 。┟祝ň_到0.1米,參考數(shù)據:tan36°≈0.73,cos36°≈0.81,sin36°≈0.59)
A.5.6B.6.9C.11.4D.13.9
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com