【題目】如圖,已知拋物線與直線交于點,.
求拋物線的解析式.
點是拋物線上、之間的一個動點,過點分別作軸、軸的平行線與直線交于點、,以、為邊構(gòu)造矩形,設(shè)點的坐標為,求,之間的關(guān)系式.
將射線繞原點逆時針旋轉(zhuǎn)后與拋物線交于點,求點的坐標.
【答案】 ; 、之間的關(guān)系式為; 點的坐標為.
【解析】
(1)把點A的坐標代入一次函數(shù)解析式求得a的值;然后把點A的坐標代入二次函數(shù)解析式來求b的值即可;
(2)根據(jù)點D的坐標,可得出點E的坐標,點C的坐標,繼而確定點B的坐標,將點B的坐標代入拋物線解析式可求出m,n之間的關(guān)系式;
(3)如圖2,作∠POA=45°,交拋物線與P,過P作PQ⊥OA于Q,過P作PM⊥x軸于M,過Q作QN⊥PM于N交y軸于R,構(gòu)建全等三角形△PNQ≌△QRO,結(jié)合全等三角形的對應(yīng)邊相等和二次函數(shù)圖象上點的坐標特征來求點P的坐標.
∵點在直線上,
∴,
解得:,
又∵點是拋物線上的一點,
將點代入,可得,
∴拋物線解析式為;
如圖,∵直線的解析式為:,點的坐標為,
∴點的坐標為,點的坐標為,
∴點的坐標為,
把點代入,可得,
∴、之間的關(guān)系式為;
如圖,作,交拋物線與,過作于,過作軸于,過作于交軸于,
則PQ=OQ,
則,
所以,,
設(shè)點為,則為,代入拋物線解析式得,
解得:,,
∵,
∴點的坐標為.
科目:初中數(shù)學 來源: 題型:
【題目】如圖中,AE⊥AB且AE=AB,BC⊥CD且BC=CD,若點E、B、D到直線AC的距離分別為6、3、2,則圖中實線所圍成的陰影部分面積S是( )
A.50B.44C.38D.32
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】工廠接到訂單生產(chǎn)如圖所示的巧克力包裝盒子,每個盒子由3個長方形側(cè)面和2個正三角形底面組成,倉庫有甲、乙兩種規(guī)格的紙板共2600張,其中甲種規(guī)格的紙板剛好可以裁出4個側(cè)面(如圖①),乙種規(guī)格的紙板可以裁出3個底面和2個側(cè)面(如圖②),裁剪后邊角料(圖中陰影部分)不再利用.
(1)若裁剪出的側(cè)面和底面恰好全部用完,問兩種規(guī)格的紙板各有多少張?
(2)一共能生產(chǎn)多少個巧克力包裝盒?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把拋物線沿軸向右平移個單位后,再沿軸翻折得到拋物線稱為第一次操作,把拋物線沿軸向右平移個單位后,再沿軸翻折得到拋物線稱為第二次操作,…,以此類推,則拋物線經(jīng)過第此操作后得到的拋物線的解析式為( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)
求出拋物線的對稱軸和頂點坐標;
在直角坐標系中,直接畫出拋物線(注意:關(guān)鍵點要準確,不必寫出畫圖象的過程);
根據(jù)圖象回答:
①取什么值時,拋物線在軸的上方?
②取什么值時,的值隨的值的增大而減?
根據(jù)圖象直接寫出不等式的解集.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,點B在線段CE上.
(感知)(1)如圖①,∠C=∠ABD=∠E=90°,易知△ACB∽△AED(不要求證明);
(拓展)(2)如圖②,△ACE中,AC=AE,且∠ABD=∠E,求證:△ACB∽△BED;
(應(yīng)用)(3)如圖③,△ACE為等邊三角形,且∠ABD=60°,AC=6,BC=2,則△ABD與△BDE的面積比為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如今通過微信朋友圈發(fā)布自己每天行走的步數(shù)已成為一種時尚.“健身達人”小張為了了解他的微信朋友圈里大家的運動情況,隨機抽取了部分好友進行調(diào)查,把他們1月29日那天每人行走的步數(shù)情況分為五個類別:A(0~4000步)(說明:0~4000表示大于或等于0,小于或等于4000,下同)、B(4001~8000步)、C(8001~12000步)、D(12001~16000步)、E(16000步以上),并將統(tǒng)計結(jié)果繪制了如圖1和2兩幅不完整的統(tǒng)計圖.
請你根據(jù)圖中提供的信息解答下列問題:
(1)小張隨機抽取了 名微信朋友圈好友;
(2)將圖1的條形統(tǒng)計圖補充完整;
(3)已知小張的微信朋友圈里共300人,請根據(jù)本次抽查的結(jié)果,估計在它的微信朋友圈里1月29日那天行走不超過8000步的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,對角線AC、BD相交于點O,下列條件不能判定四邊形ABCD為平行四邊形的是( 。
A.AB∥CD,AD∥BCB.OA=OC,OB=OD
C.AD=BC,AB∥CDD.AB=CD,AD=BC
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,的三個頂點坐標分別為,,.
(1)在圖中畫出關(guān)于軸對稱的;
(2)通過平移,使移動到原點的位置,畫出平移后的.
(3)在中有一點,則經(jīng)過以上兩次變換后點的對應(yīng)點的坐標為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com