如圖,河流的兩岸PQ、MN互相平行,河岸PQ上有一排小樹,已知相鄰兩樹之間的距離CD=50米,某人在河岸MN的A處測得∠DAN=35°,然后沿河岸走了120米到達B處,測得∠CBN=70°.求河流的寬度CE.(結果保留兩個有效數(shù)字)(參考數(shù)據(jù):sin35°≈0.57,cos35°≈0.82,tan35°≈0.70, Sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)
66米.

試題分析:過點C作CF∥DA交AB于點F,易證四邊形AFCD是平行四邊形.再在直角△BEC中,利用三角函數(shù)求解.
過點C作CF∥DA交AB于點F.

∵MN∥PQ,CF∥DA,
∴四邊形AFCD是平行四邊形.
∴AF=CD=50m,∠CFB=35°.
∴FB=AB-AF=120-50=70m.
根據(jù)三角形外角性質可知,∠CBN=∠CFB+∠BCF,
∴∠BCF=70°-35°=35°=∠CFB,
∴BC=BF=70m.
在Rt△BEC中,
sin70°=,
∴CE=BC•sin70°≈70×0.94=65.8≈66m.
答:河流的寬是66米.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,從A地到B地的公路需要經(jīng)過C地,圖中AC=10千米,∠CAB=25°,∠CBA=37°。因城市規(guī)劃的需要,將在A,B兩地之間修建一條筆直的公路。
(1)求改直后的公路AB的長;
(2)問:公路改造后比原來縮短了多少千米?
(sin25°≈0.42,cos25°≈0.91,sin37°≈0.60,tan37°≈0.75)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,一艘海輪位于燈塔P的北偏東65方向,距離燈塔80海里的A處,它沿正南方向航行一段時間后,到達位于燈塔P的南偏東45方向上的B處,這時,海輪所在的B處距離燈塔P有多遠?(結果用非特殊角的三角函數(shù)及根式表示即可)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在小山的東側A點處有一個熱氣球,由于受風向的影響,該熱氣球以每分鐘30米的速度沿與地面成75°角的方向飛行,25分鐘后到達C處,此時熱氣球上的人測得小山西側B點的俯角為30°,則A,B兩點間的距離為     米.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在地面上的點A處測得樹頂B的仰角為α度,AC=7米,則樹高BC為       米(用含α的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:計算題

計算:

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

的值為        

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

海上有一小島,為了測量小島兩端A、B的距離,測量人員設計了一種測量方法,如圖所示,已知B點是CD的中點,E是BA延長線上的一點,測得AE=10海里,DE=30海里,且DE⊥EC,cos∠D=.
(1)求小島兩端A、B的距離;
(2)過點C作CF⊥AB交AB的延長線于點F,求sin∠BCF的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

某時刻海上點P處有一客輪,測得燈塔A位于客輪P的北偏東30°方向,且相距20海里.客輪以60海里/小時的速度沿北偏西60°方向航行小時到達B處,那么tan∠ABP=(  )
A.B.2
C.D.

查看答案和解析>>

同步練習冊答案