【題目】小華將一條直角邊長為1的一個等腰直角三角形紙片(如圖1),沿它的對稱軸折疊1次后得到一個等腰直角三角形(如圖2),再將圖2的等腰直角三角形沿它的對稱軸折疊后得到一個等腰直角三角形(如圖3),則圖3中的等腰直角三角形的一條腰長為_________;同上操作,若小華連續(xù)將圖1的等腰直角三角形折疊n次后所得到的等腰直角三角形(如圖n+1)的一腰長為_________.
圖1 圖2 圖3 圖n+1
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在長方形ABCD中,AB=6,BC=8,點O在對角線AC上,且OA=OB=OC,點P是邊CD上的一個動點,連接OP,過點O作OQ⊥OP,交BC于點Q.
(1)求OB的長度;
(2)設DP= x,CQ= y,求y與x的函數(shù)表達式(不要求寫自變量的取值范圍);
(3)若OCQ是等腰三角形,求CQ的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一輛出租車從A地出發(fā),在一條東西走向的街道上往返,每次行駛的路程(記向東為正)記錄如下(x>6且x<14,單位km)
(1)這輛出租車第三次行駛完后在離出發(fā)點的 方向;經(jīng)過連續(xù)4次行駛后,這輛車所在的位置 (結(jié)果用表示);
(2)這輛出租車一共行駛了多少路程(結(jié)果用表示);當x=8時,出租車行駛的路程是多少 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知一張長方形紙片,().將這張紙片沿著過點的折痕翻折,使點落在邊上的點,折痕交于點,將折疊后的紙片再次沿著另一條過點的折痕翻折,點恰好與點重合,此時折痕交于點.
(1)在圖中確定點、點和點的位置;
(2)聯(lián)結(jié),則______;
(3)用含有的代數(shù)式表示線段的長.(注:直角三角形中,兩直角邊的平方的和等于斜邊的平方)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=ax2+bx+c的頂點為D(﹣1,2),與x軸的一個交點A在點(﹣3,0)和(﹣2,0)之間,其部分圖象如圖,則以下結(jié)論:①b2﹣4ac<0;②當x>﹣1時,y隨x增大而減。虎a+b+c<0;④若方程ax2+bx+c﹣m=0沒有實數(shù)根,則m>2; ⑤3a+c<0.其中正確結(jié)論的個數(shù)是( 。
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知n邊形的內(nèi)角和θ=(n﹣2)×180°.
(1)甲同學說,θ能取900°;而乙同學說,θ也能取800°.甲、乙的說法對嗎?若對,求出邊數(shù)n.若不對,說明理由;
(2)若n邊形變?yōu)椋?/span>n+x)邊形,發(fā)現(xiàn)內(nèi)角和增加了540°,用列方程的方法確定x.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“食品安全”受到全社會的廣泛關注,我市某中學對部分學生就食品安全知識的了解程度,采用隨機抽樣調(diào)查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了下面的兩幅尚不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:
(1)接受問卷調(diào)查的學生共有_________人,扇形統(tǒng)計圖中“基本了解”部分所對應扇形的圓心角為_________度;
(2)請補全條形統(tǒng)計圖;
(3)若該中學共有學生900人,請根據(jù)上述調(diào)查結(jié)果,估計該中學學生中對校園安全知識達到“了解”和“基本了解”程度的總?cè)藬?shù);
扇形統(tǒng)計圖 條形統(tǒng)計圖
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綠色出行是相對環(huán)保的出行方式,通過碳減排和碳中和實現(xiàn)環(huán)境資源的可持續(xù)利用和交通可持續(xù)發(fā)展.汽車工業(yè)的發(fā)展為人類帶來了快捷和方便,但同時,汽車的發(fā)展也引起了能源的消耗和空氣的污染.并且已成為全國各大城市的第一大污染源。實驗中學為了解全校學生的交通方式,責成該校七年級(1班)的4位同學對該校部分學生進行了隨機調(diào)查,按“騎自行車”、“乘公交車”、“步行”、“乘私家車”、“其他方式”設置選項.要求被調(diào)查的所有學生從中選一項,并將調(diào)查結(jié)果繪制成了條形統(tǒng)計圖1和扇形統(tǒng)計圖2.根據(jù)所提供的信息,解答下列問題.
(1)本次調(diào)查的人數(shù)共有___________人,扇形中步行的圓心角度度數(shù)為________.
(2)把條形統(tǒng)計圖補充完整.
(3)若該校共有學生3000人,則全校步行的學生大約有多少人數(shù)?
(4)根據(jù)調(diào)查結(jié)果對學生的環(huán)保出行提一條合理化的建議.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下面是小東設計的“過直線外一點作這條直線的平行線”的尺規(guī)作圖過程.已知:如圖1,直線l及直線l外一點A.
求作:直線AD,使得AD∥l.作法:如圖2,
①在直線l上任取一點B,連接AB;
②以點B為圓心,AB長為半徑畫弧,
交直線l于點C;
③分別以點A,C為圓心,AB長為半徑
畫弧,兩弧交于點D(不與點B重合);
④作直線AD.
所以直線AD就是所求作的直線.根據(jù)小東設計的尺規(guī)作圖過程,完成下面的證明.(說明:括號里填推理的依據(jù))
證明:連接CD.
∵AD=CD=__________=__________,
∴四邊形ABCD是 ( ).
∴AD∥l( ).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com