【題目】如圖,△ABC和△BED都是等腰直角三角形,∠ABC=∠DBE=90°,AD,CE相交于點G
(1)求證:△ABD≌△CBE;
(2)求證:AD⊥CE;
(3)連接AE,CD,若AE=CD=5,求△ABC和△BED的面積之和.
【答案】(1)證明見解析;(2)證明見解析;(3).
【解析】
(1)根據(jù)SAS證明△ABD≌△CBE即可;
(2)設(shè)AD交BC于點O.由△ABD≌△CBE,推出∠BAD=∠BCE,由∠BAO+∠AOB=90°,∠AOB=∠COG,推出∠COG+∠OCG=90°,可得∠OGC=90°;
(3)連接AE,CD.利用勾股定理求出2AB2+2BD2=30即可解決問題;
(1)證明:∵∠ABC=∠DBE=90°,
∴∠ABD=∠CBE,
在△ABD和△CBE中,
∴△ABD≌△CBE(SAS).
(2)證明:設(shè)AD交BC于點O.
∵△ABD≌△CBE,
∴∠BAD=∠BCE,
∵∠BAO+∠AOB=90°,∠AOB=∠COG,
∴∠COG+∠OCG=90°,
∴∠OGC=90°,
∴AD⊥CE.
(3)連接AE,CD.
∵AD⊥EC,
∴∠CGD=∠AGE=90°
∴CG2+DG2=CD2,AG2+GE2=AE2,
∵CD=,AE=5,
∴CG2+DG2+AG2+GE2=30,
∴AC2+DE2=30,
∴2AB2+2BD2=30,
∴AB2+BD2=15,
∵S△ABC+S△BDE=AB2+BD2=(AB2+BD2)=.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4,E為AB的中點,將△ADE沿直線DE折疊后,點A落在點F處,DF交對角線AC于G,則FG的長是________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠A=30°,點D是斜邊AB的中點,點G是Rt△ABC的重心,GE⊥AC于點E.若BC=6cm,則GE=__cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,先將正方形紙片兒對折,折痕為MN,再把點B折疊在折痕MN上,折痕為AE,點E在CB上,點B在MN上的對應(yīng)點為H,沿AH和DH剪下得到三角形ADH,則下列選項錯誤的是( 。
A. DH=AD B. AH=DH C. NE=BE D. DM=DH
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,點,在軸上任取一點,連接,作的垂直平分線,過點作軸的垂線,與交于點.設(shè)點的坐標為.
(Ⅰ)當的坐標取時,點的坐標為________;
(Ⅱ)求,滿足的關(guān)系式;
(Ⅲ)是否存在點,使得恰為等邊三角形?若存在,求點的坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線與x軸交于A、B兩點,與y軸交于C點,直線BD交拋物線于點D,并且,.
(1)求拋物線的解析式;
(2)已知點M為拋物線上一動點,且在第三象限,順次連接點B、M、C,求面積的最大值;
(3)在(2)中面積最大的條件下,過點M作直線平行于y軸,在這條直線上是否存在一個以Q點為圓心,OQ為半徑且與直線AC相切的圓?若存在,求出圓心Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩人相約周末登花果山,甲、乙兩人距地面的高度y(米)與登山時間x(分)之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息解答下列問題:
(1)甲登山上升的速度是每分鐘 米,乙在A地時距地面的高度b為 米;
(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,請求出乙登山全程中,距地面的高度y(米)與登山時間x(分)之間的函數(shù)關(guān)系式;
(3)登山多長時間時,甲、乙兩人距地面的高度差為70米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們知道,平面內(nèi)互相垂直且有公共原點的兩條數(shù)軸構(gòu)成平面直角坐標系,如果兩條數(shù)軸不垂直,而是相交成任意的角ω(0°<ω<180°且ω≠90°),那么這兩條數(shù)軸構(gòu)成的是平面斜坐標系,兩條數(shù)軸稱為斜坐標系的坐標軸,公共原點稱為斜坐標系的原點,如圖1,經(jīng)過平面內(nèi)一點P作坐標軸的平行線PM和PN,分別交x軸和y軸于點M,N.點M、N在x軸和y軸上所對應(yīng)的數(shù)分別叫做P點的x坐標和y坐標,有序?qū)崝?shù)對(x,y)稱為點P的斜坐標,記為P(x,y)
(1)如圖2,ω=45°,矩形OABC中的一邊OA在x軸上,BC與y軸交于點D,
OA=2,OC=1.
①點A、B、C在此斜坐標系內(nèi)的坐標分別為A ,B ,C .
②設(shè)點P(x,y)在經(jīng)過O、B兩點的直線上,則y與x之間滿足的關(guān)系為 .
③設(shè)點Q(x,y)在經(jīng)過A、D兩點的直線上,則y與x之間滿足的關(guān)系為 .
(2)若ω=120°,O為坐標原點.
①如圖3,圓M與y軸相切原點O,被x軸截得的弦長OA=2,求圓M的半徑及圓心M的斜坐標.
②如圖4,圓M的圓心斜坐標為M(2,2),若圓上恰有兩個點到y軸的距離為1,則圓M的半徑r的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知內(nèi)接于⊙,直徑交于點,連接,過點作,垂足為.過點作⊙的切線,交的延長線于點.
(1)若,求的度數(shù);
(2)若,求證:;
(3)在(2)的條件下,連接,設(shè)的面積為,的面積為,若,求的值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com