【題目】為發(fā)展學(xué)生的核心素養(yǎng),培養(yǎng)學(xué)生的綜合能力,某學(xué)校計劃開設(shè)四門選修課:樂器、舞蹈、繪畫、書法,學(xué)校采取隨機(jī)抽樣的方法進(jìn)行問卷調(diào)查(每個被調(diào)查的學(xué)生必須選擇而且只能選擇其中一門).對調(diào)查結(jié)果進(jìn)行整理,繪制成如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中所給信息解答下列問題:
(1)本次調(diào)查的學(xué)生共有人,在扇形統(tǒng)計圖中,m的值是;
(2)將條形統(tǒng)計圖補(bǔ)充完整;
(3)在被調(diào)查的學(xué)生中,選修書法的有2名女同學(xué),其余為男同學(xué),現(xiàn)要從中隨機(jī)抽取2名同學(xué)代表學(xué)校參加某社區(qū)組織的書法活動,請寫出所抽取的2名同學(xué)恰好是1名男同學(xué)和1名女同學(xué)的概率.
【答案】
(1)50;30%
(2)50×20%=10(人),50×10%=5(人),如圖所示:
(3)∵5﹣2=3(名),
∴選修書法的5名同學(xué)中,有3名男同學(xué),2名女同學(xué),
男1 | 男2 | 男3 | 女1 | 女2 | |
男1 | ﹣﹣﹣ | 男2男1 | 男3男1 | 女1男1 | 女2男1 |
男2 | (男1男2) | ﹣﹣﹣ | 男3男2 | 女1男2 | 女2男2 |
男3 | (男1男3) | 男2男3 | ﹣﹣﹣ | 女1男3 | 女2男3 |
女1 | (男1,女1) | 男2女1 | 男3女1 | ﹣﹣﹣ | 女2女1 |
女2 | (男1女2) | 男2女2 | 男3女2 | 女1女2 | ﹣﹣﹣ |
所有等可能的情況有20種,其中抽取的2名同學(xué)恰好是1名男同學(xué)和1名女同學(xué)的情況有12種,
則P(一男一女)= = .
【解析】解:(1)20÷40%=50(人),15÷50=30%; 所以答案是:50;30%;
【考點(diǎn)精析】掌握扇形統(tǒng)計圖和條形統(tǒng)計圖是解答本題的根本,需要知道能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個項目的具體數(shù)目以及事物的變化情況;能清楚地表示出每個項目的具體數(shù)目,但是不能清楚地表示出各個部分在總體中所占的百分比以及事物的變化情況.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=3cm,BC=6cm.點(diǎn)P從點(diǎn)D出發(fā)向點(diǎn)A運(yùn)動,運(yùn)動到點(diǎn)A即停止;同時,點(diǎn)Q從點(diǎn)B出發(fā)向點(diǎn)C運(yùn)動,運(yùn)動到點(diǎn)C即停止,點(diǎn)P、Q的速度都是1cm/s.連接PQ、AQ、CP.設(shè)點(diǎn)P、Q運(yùn)動的時間為ts.
當(dāng)t為何值時,四邊形ABQP是矩形;
當(dāng)t為何值時,四邊形AQCP是菱形;
分別求出(2)中菱形AQCP的周長和面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,AB=4,BC=2.若把它放在平面直角坐標(biāo)系中,使AB在x軸上,點(diǎn)C在y軸上,如果點(diǎn)A的坐標(biāo)為(-3,0),求點(diǎn)B,C,D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國是世界上嚴(yán)重缺水的國家之一.為了倡導(dǎo)“節(jié)約用水從我做起”,小剛在他所在班的50名同學(xué)中,隨機(jī)調(diào)查了10名同學(xué)家庭中一年的月均用水量(單位:t),并將調(diào)查結(jié)果繪成了如下的條形統(tǒng)計圖
【1】求這10個樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);
【2】根據(jù)樣本數(shù)據(jù),估計小剛所在班50名同學(xué)家庭中月均用水量不超過7 t的約有多少戶.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用適當(dāng)?shù)姆椒ń庀铝蟹匠蹋?/span>
(1) (2)2x2+3x—1=0(用配方法解)
(3) (4)(x+1)(x+8)=-2
(5) (6)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正方形ABCD,P為射線AB上的一點(diǎn),以BP為邊作正方形BPEF,使點(diǎn)F在線段CB的延長線上,連接EA,EC.
(Ⅰ)如圖1,若點(diǎn)P在線段AB的延長線上,求證:EA=EC;
(Ⅱ)如圖2,若點(diǎn)P在線段AB的中點(diǎn),連接AC,判斷△ACE的形狀,并說明理由;
(Ⅲ)如圖3,若點(diǎn)P在線段AB上,連接AC,當(dāng)EP平分∠AEC時,設(shè)AB=a,BP=b,求a:b及∠AEC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的直徑AB的長為10,弦AC的長為5,∠ACB的平分線交⊙O于點(diǎn)D.
(1)求 的長.
(2)求弦BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解:
如圖1,在四邊形ABCD的邊AB上任取一點(diǎn)E(點(diǎn)E不與點(diǎn)A、點(diǎn)B重合),分別連接ED,EC,可以把四邊形ABCD分成三個三角形,如果其中有兩個三角形相似,我們就把E叫做四邊形ABCD的邊AB上的相似點(diǎn);如果這三個三角形都相似,我們就把E叫做四邊形ABCD的邊AB上的強(qiáng)相似點(diǎn).
解決問題:
(1)如圖1,∠A=∠B=∠DEC=55°,試判斷點(diǎn)E是否是四邊形ABCD的邊AB上的相似點(diǎn),并說明理由;
(2)如圖2,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四點(diǎn)均在正方形網(wǎng)格(網(wǎng)格中每個小正方形的邊長為1)的格點(diǎn)(即每個小正方形的頂點(diǎn))上,試在圖2中畫出矩形ABCD的邊AB上的一個強(qiáng)相似點(diǎn)E;
拓展探究:
(3)如圖3,將矩形ABCD沿CM折疊,使點(diǎn)D落在AB邊上的點(diǎn)E處.若點(diǎn)E恰好是四邊形ABCM的邊AB上的一個強(qiáng)相似點(diǎn),試探究AB和BC的數(shù)量關(guān)系.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com