【題目】如圖,O的直徑AB=4,CO上一點(diǎn),連接OC.過點(diǎn)CCDAB,垂足為D, 過點(diǎn)BBMOC,在射線BM上取點(diǎn)E, 使BE=BD,連接CE.

(1) 當(dāng)COB=60° 時(shí),直接寫出陰影部分的面積;

(2) 求證:CEO的切線.

【答案】(1) (2)證明見解析.

【解析】試題分析:(1)已知COB=60°,CDAB,OA=OB=OC=2,可求得CD=,所以 ;(2)根據(jù)已知條件易證△CBD≌△CBE,可得∠CEB=∠CDB=90°,再由BMOC可得∠OCE+∠CEB=180°,即可得OCE=180°CEB =180°90°=90°,結(jié)論得證.

試題解析:

(1)

(2)證明:∵BMOC

∴∠OCB=CBE

OC=OB

∴∠OCB=OBC

∴∠OBC=CBE

BD=BE, BC=BC

∴△CBD≌△CBE

∴∠CEB=CDB=90°

BMOC

∴ ∠OCE+∠CEB=180°

∴∠OCE=180°CEB =180°90°=90°

OC⊥CE CE O的切線.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知x=0是方程x2+bx+b﹣3=0的一個(gè)根,那么此方程的另一個(gè)根為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】m-n=-1,(m-n)-2(m-n)的值是(  )

A. 3 B. 2 C. 1 D. -1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,折疊長(zhǎng)方形紙片ABCD,使點(diǎn)D落在邊BC上的點(diǎn)F處,折痕為AE,AB=CD=6,AD=BC=10,試求EC的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中有RtABC,已知∠CAB=90°,AB=AC,A(-2,0),B(0,1).

(1)點(diǎn)C的坐標(biāo)是 ;

(2)將△ABC沿x軸正方向平移得到△A BC′,且B,C兩點(diǎn)的對(duì)應(yīng)點(diǎn)B′,C′恰好落在反比例函數(shù)的圖象上,求該反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一件羽絨服先按成本提高50%標(biāo)價(jià),再以8折(標(biāo)價(jià)的80%)出售,結(jié)果獲利250元.若設(shè)這件羽絨服的成本是x元,根據(jù)題意,可得到的方程是( )
A.x(1+50%)×80%=x﹣250
B.x(1+50%)×80%=x+250
C.(1+50%x)×80%=x﹣250
D.(1+50%x)×80%=250﹣x

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算下列各題:
(1)﹣11﹣(﹣3)×6
(2)﹣3.5÷ ×(﹣0.75)
(3)﹣32+1+4× ﹣|﹣1 |×(﹣0.5)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AC=BC=5,D是AB的中點(diǎn),點(diǎn)E、F分別在AC、BC邊上運(yùn)動(dòng)(點(diǎn)E不與點(diǎn)A、C重合),且保持AE=CF,連接DE、DF、EF,在此運(yùn)動(dòng)變化的過程中,△CEF周長(zhǎng)的最小值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,EAD邊的中點(diǎn),BEAC,垂足為點(diǎn)F,連接DF,分析下列四個(gè)結(jié)論:①△AEF∽△CAB;②CF=2AF;③DFDC;④tan∠CAD.其中正確的結(jié)論有( )

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案