【題目】如圖,⊙O的直徑AB=4,C是⊙O上一點(diǎn),連接OC.過點(diǎn)C作CD⊥AB,垂足為D, 過點(diǎn)B作BM∥OC,在射線BM上取點(diǎn)E, 使BE=BD,連接CE.
(1) 當(dāng)∠COB=60° 時(shí),直接寫出陰影部分的面積;
(2) 求證:CE是 ⊙O的切線.
【答案】(1) (2)證明見解析.
【解析】試題分析:(1)已知∠COB=60°,CD⊥AB,OA=OB=OC=2,可求得CD=,所以 ;(2)根據(jù)已知條件易證△CBD≌△CBE,可得∠CEB=∠CDB=90°,再由BM∥OC可得∠OCE+∠CEB=180°,即可得∠OCE=180°-∠CEB =180°-90°=90°,結(jié)論得證.
試題解析:
(1)
(2)證明:∵BM∥OC
∴∠OCB=∠CBE
∵OC=OB
∴∠OCB=∠OBC
∴∠OBC=∠CBE
又BD=BE, BC=BC
∴△CBD≌△CBE
∴∠CEB=∠CDB=90°
∵BM∥OC
∴ ∠OCE+∠CEB=180°
∴∠OCE=180°-∠CEB =180°-90°=90°
即OC⊥CE ∴CE是 ⊙O的切線.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,折疊長(zhǎng)方形紙片ABCD,使點(diǎn)D落在邊BC上的點(diǎn)F處,折痕為AE,AB=CD=6,AD=BC=10,試求EC的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中有Rt△ABC,已知∠CAB=90°,AB=AC,A(-2,0),B(0,1).
(1)點(diǎn)C的坐標(biāo)是 ;
(2)將△ABC沿x軸正方向平移得到△A′ B′C′,且B,C兩點(diǎn)的對(duì)應(yīng)點(diǎn)B′,C′恰好落在反比例函數(shù)的圖象上,求該反比例函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一件羽絨服先按成本提高50%標(biāo)價(jià),再以8折(標(biāo)價(jià)的80%)出售,結(jié)果獲利250元.若設(shè)這件羽絨服的成本是x元,根據(jù)題意,可得到的方程是( )
A.x(1+50%)×80%=x﹣250
B.x(1+50%)×80%=x+250
C.(1+50%x)×80%=x﹣250
D.(1+50%x)×80%=250﹣x
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算下列各題:
(1)﹣11﹣(﹣3)×6
(2)﹣3.5÷ ×(﹣0.75)
(3)﹣32+1+4× ﹣|﹣1 |×(﹣0.5)2 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=BC=5,D是AB的中點(diǎn),點(diǎn)E、F分別在AC、BC邊上運(yùn)動(dòng)(點(diǎn)E不與點(diǎn)A、C重合),且保持AE=CF,連接DE、DF、EF,在此運(yùn)動(dòng)變化的過程中,△CEF周長(zhǎng)的最小值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,E是AD邊的中點(diǎn),BE⊥AC,垂足為點(diǎn)F,連接DF,分析下列四個(gè)結(jié)論:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=.其中正確的結(jié)論有( )
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com