【題目】如圖,已知點(diǎn)A是反比例y(x0)的圖象上的一個(gè)動(dòng)點(diǎn),連接OA,OBOA,且OB2OA,那么經(jīng)過(guò)點(diǎn)B的反比例函數(shù)圖象的表達(dá)式為_____

【答案】y=-

【解析】

過(guò)AACy,BDy,可得∠ACO=∠BDO=90°,利用三角關(guān)系得到三角形相似,由相似得比例求出相似比,確定出面積比,求出三角形AOC面積,進(jìn)而確定出三角形OBD面積,利用反比例函數(shù)k的幾何意義確定出所求k的值,即可確定出解析式

過(guò)AACy,BDy,可得∠ACO=∠BDO=90°.

∵∠AOC+∠OAC=90°,∠AOC+∠BOD=90°,∴∠OAC=∠BOD,∴△AOC∽△OBD

OB=2OA,∴△AOC與△OBD相似比為1:2,∴SAOCSOBD=1:4.

∵點(diǎn)A在反比例y=,∴△AOC面積為,∴△OBD面積為2,k=4,則點(diǎn)B所在的反比例解析式為y=﹣

故答案為:y=﹣

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某產(chǎn)品每件成本28元,在試銷階段產(chǎn)品的日銷售量y(件)與每件產(chǎn)品的日銷售價(jià)x(元)之間的關(guān)系如圖中的折線所示.為維持市場(chǎng)物價(jià)平衡,最高售價(jià)不得高出83元.

(1)求y與x之間的函數(shù)關(guān)系式;

(2)要使每日的銷售利潤(rùn)w最大,每件產(chǎn)品的日銷售價(jià)應(yīng)定為多少元?此時(shí)每日銷售利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+3的圖象過(guò)點(diǎn)A(-1,0),對(duì)稱軸為過(guò)點(diǎn)(1,0)且與y軸平行的直線.

(1)求點(diǎn)B的坐標(biāo)

(2)求該二次函數(shù)的關(guān)系式;

(3)結(jié)合圖象,解答下列問(wèn)題:

當(dāng)x取什么值時(shí),該函數(shù)的圖象在x軸上方?

當(dāng)-1<x<2時(shí),求函數(shù)y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校教師開(kāi)展了練一手好字的活動(dòng),校委會(huì)對(duì)部分教師練習(xí)字帖的情況進(jìn)行了問(wèn)卷調(diào)查,問(wèn)卷設(shè)置了柳體”、“顏體”、”歐體其他類型,每位教師僅能選一項(xiàng),根據(jù)調(diào)查的結(jié)果繪制了如下統(tǒng)計(jì)表:

類別

柳體

顏體

歐體

其他

合計(jì)

人數(shù)

4

10

6

占的百分比

0.5

0.25

1

根據(jù)圖表提供的信息解答下列問(wèn)題:

(1)這次問(wèn)卷調(diào)查了多少名教師?

(2)請(qǐng)你補(bǔ)全表格.

(3)在調(diào)查問(wèn)卷中,甲、乙、丙、丁四位教師選擇了柳體,現(xiàn)從以上四位教師中任意選出2名教師參加學(xué)校的柳體興趣小組,請(qǐng)你用畫樹(shù)狀圖或列表的方法,求選出的2人恰好是乙和丙兩位教師的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)一種商品的進(jìn)價(jià)為每件30元,售價(jià)為每件40元.每天可以銷售48件,為盡快減少庫(kù)存,商場(chǎng)決定降價(jià)促銷.

(1)若該商品連續(xù)兩次下調(diào)相同的百分率后售價(jià)降至每件32.4元,求兩次下降的百分率;

(2)經(jīng)調(diào)查,若每降價(jià)0.5元,每天可多銷售4件,那么每天要想獲得510元的利潤(rùn),每件應(yīng)降價(jià)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】12分)某商場(chǎng)將進(jìn)價(jià)為2000元的冰箱以2400元售出,平均每天能售出8臺(tái),為了配合國(guó)家家電下鄉(xiāng)政策的實(shí)施,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施.調(diào)查表明:這種冰箱的售價(jià)每降低50元,平均每天就能多售出4臺(tái).

1)假設(shè)每臺(tái)冰箱降價(jià)x,商場(chǎng)每天銷售這種冰箱的利潤(rùn)是y元,請(qǐng)寫出yx之間的函數(shù)表達(dá)式(不要求寫自變量的取值范圍);

2)每臺(tái)冰箱降價(jià)多少元時(shí),商場(chǎng)每天銷售這種冰箱的利潤(rùn)最高?最高利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD中,EF是對(duì)角線AC上兩點(diǎn),連接BE、BF、DE、DF,則添加下列條件①∠ABE=∠CBF;②AECF;③ABAF;④BEBF.可以判定四邊形BEDF是菱形的條件有( 。

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】 如圖,在中,,.點(diǎn)D從點(diǎn)C出發(fā)沿方向以每秒4個(gè)單位長(zhǎng)的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿方向以每秒2個(gè)單位長(zhǎng)的速度向點(diǎn)B勻速運(yùn)動(dòng),設(shè)點(diǎn)DE運(yùn)動(dòng)的時(shí)間是t.過(guò)點(diǎn)D于點(diǎn)F,連接、

1)求證:;

2)四邊形能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,說(shuō)明理由.

3)當(dāng)t為何值時(shí),為直角三角形?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等邊△ABC的邊長(zhǎng)為6,ADBC邊上的中線,MAD上的動(dòng)點(diǎn),EAC邊上一點(diǎn),若AE=2,EM+CM的最小值為

查看答案和解析>>

同步練習(xí)冊(cè)答案