【題目】目前節(jié)能燈在城市已基本普及,為響應號召,某商場計劃購進甲,乙兩種節(jié)能燈共200只,這兩種節(jié)能燈的進價、售價如下表:

進價(元/只)

售價(元/只)

甲型

20

30

乙型

30

45

1)若購進甲,乙兩種節(jié)能燈共用去5200元,求甲、乙兩種節(jié)能燈各進多少只?

2)若商場準備用不多于5400元購進這兩種節(jié)能燈,問甲型號的節(jié)能燈至少進多少只?

3)在(2)的條件下,該商場銷售完200只節(jié)能燈后能否實現(xiàn)盈利超過2690元的目標?若能請你給出相應的采購方案;若不能說明理由.

【答案】(1)甲種節(jié)能燈有80只,則乙種節(jié)能燈有120只;(2)甲型號的節(jié)能燈至少進60只;(3)有兩種:當時,采購甲種型號的節(jié)能燈60臺,乙種型號的節(jié)能燈140臺;當時,采購甲種型號的節(jié)能燈61臺,乙種型號的節(jié)能燈139

【解析】

1)設(shè)甲種節(jié)能燈有只,則乙種節(jié)能燈有只,根據(jù)題意列出關(guān)于x,y的二元一次方程組進行求解即可;

2)設(shè)甲種節(jié)能燈有只,則乙種節(jié)能燈有只,根據(jù)題意列出關(guān)于m的一元一次不等式進行求解即可;

3)根據(jù)題意可列不等式,求得m的取值范圍,再結(jié)合(2)取m的整數(shù)值即可.

解:設(shè)甲種節(jié)能燈有只,則乙種節(jié)能燈有只,由題意得:

,

解得:

答:甲種節(jié)能燈有80只,則乙種節(jié)能燈有120只;

2)設(shè)甲種節(jié)能燈有只,則乙種節(jié)能燈有. 根據(jù)題意得:

,

解得,,

答:甲型號的節(jié)能燈至少進60只;

3)由題意,得

,

解得,,

,

為整數(shù)),

;

相應方案有兩種:當時,采購甲種型號的節(jié)能燈60臺,乙種型號的節(jié)能燈140臺;當時,采購甲種型號的節(jié)能燈61臺,乙種型號的節(jié)能燈139臺;

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,BAC的平分線與BC的垂直平分線相交于點D,DEABDFAC,垂足分別為E,F,AB=11,AC=5,則BE=______________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校課外興趣小組在本校學生中開展感動中國2014年度人物先進事跡知曉情況專題調(diào)查活動,采取隨機抽樣的方式進行問卷調(diào)查,問卷調(diào)查的結(jié)果分為A、B、C、D四類.其中,A類表示非常了解”,B類表示比較了解”,C類表示基本了解”,D類表示不太了解,劃分類別后的數(shù)據(jù)整理如下表:

類別

A

B

C

D

頻數(shù)

30

40

24

b

頻率

a

0.4

0.24

0.06

(1)表中的a=________,b=________;

(2)根據(jù)表中數(shù)據(jù),求扇形統(tǒng)計圖中類別為B的學生數(shù)所對應的扇形圓心角的度數(shù);

(3)若該校有學生1000名,根據(jù)調(diào)查結(jié)果估計該校學生中類別為C的人數(shù)約為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,AB,AC⊙O相切于點B,C,∠A=50°,點P是圓上異于B,C的一動點,則∠BPC的度數(shù)是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線的頂點為(1,﹣4),且過點(﹣2,5).

(1)求拋物線解析式;

(2)直接寫出當函數(shù)值y>0時,自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】珍珍與環(huán)環(huán)兩人一起做游戲,游戲規(guī)則如下:每人從1,2,3,4,5,6,7,8中任意選擇一個數(shù)字,然后兩人各轉(zhuǎn)動一次如圖所示的轉(zhuǎn)盤(轉(zhuǎn)盤被分為面積相等的四個扇形),兩人轉(zhuǎn)出的數(shù)字之和等于誰事先選擇的數(shù),誰就獲勝;若兩人轉(zhuǎn)出的數(shù)字之和不等于她們各自選擇的數(shù),就再做一次上述游戲,直到?jīng)Q出勝負.若環(huán)環(huán)事先選擇的數(shù)是5,用列表法或畫樹狀圖的方法,求她獲勝的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,將ABC繞頂點C逆時針旋轉(zhuǎn)得到A'B'C,MBC的中點,PA'B'的中點,連接PM.若BC2,∠BAC30°,則線段PM的最大值是( 。

A.4B.3C.2D.1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場統(tǒng)計了每個營業(yè)員在某月的銷售額,繪制了如下的條形統(tǒng)計圖以及不完整的扇形統(tǒng)計圖:

解答下列問題:

(1)設(shè)營業(yè)員的月銷售額為x(單位:萬元),商場規(guī)定:當x<15時為不稱職,當15≤x<20時,為基本稱職,當20≤x<25為稱職,當x≥25時為優(yōu)秀.則扇形統(tǒng)計圖中的a=________,b=________.

(2)所有營業(yè)員月銷售額的中位數(shù)和眾數(shù)分別是多少?

(3)為了調(diào)動營業(yè)員的積極性,決定制定一個月銷售額獎勵標準,凡到達或超過這個標準的營業(yè)員將受到獎勵.如果要使得營業(yè)員的半數(shù)左右能獲獎,獎勵標準應定為多少萬元?并簡述其理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直線軸于點,交軸于點, 的中點, 為射線上一點,連,將點順時針旋轉(zhuǎn)得線段,則的最小值為__________.

查看答案和解析>>

同步練習冊答案