【題目】如圖,在ABCD中,CFAB于點F,過點DDEBC的延長線于點E,且CFDE

1)求證:△BFC≌△CED;

2)若∠B60°,AF5,求BC的長.

【答案】1)詳見解析;(2BC10

【解析】

1)由平行四邊形的性質(zhì)可得ABCD,可得∠B=∠DCE,由AAS可證BFC≌△CED;

2)設(shè)BCCDABx,由直角三角形的性質(zhì)可得(x5)=x,可求x的值,即可求BC的長.

1)證明:∵四邊形ABCD是平行四邊形

ABCDABCD

∴∠B=∠DCE

CFAB,DEBC,

∴∠CFB=∠DEC90°,且CFDE,∠B=∠DCE

∴△BFC≌△CED AAS

2)∵△BFC≌△CED

BCDCAB

設(shè)BCx,

CDABx

RtBCF中,∠B60°

∴∠BCF30°

FBBC

∴(x5)=x

解得x10

BC10

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如右圖,正方形ABCD的邊長為2,點EBC邊上一點,以AB為直徑在正方形內(nèi)作半圓

O,將△DCE沿DE翻折,點C剛好落在半圓O的點F處,則CE的長為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,C=90°,ABC的平分線交AC于點E,過點EBE的垂線交AB于點F,OBEF的外接圓.

1)求證:ACO的切線;

2)過點EEHAB,垂足為H,求證:CD=HF

3)若CD=1,EH=3,求BFAF長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中,EAD的中點,已知DEF的面積為1,則平行四邊形ABCD的面積為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=x2+bx+c經(jīng)過△ABC的三個頂點,其中點A(0,1,點B(﹣9,10,AC∥x軸,點P時直線AC下方拋物線上的動點.

(1求拋物線的解析式;(2過點P且與y軸平行的直線l與直線AB、AC分別交于點E、F,當(dāng)四邊形AECP的面積最大時,求點P的坐標(biāo);

(3當(dāng)點P為拋物線的頂點時,在直線AC上是否存在點Q,使得以C、P、Q為頂點的三角形與△ABC相似,若存在,求出點Q的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,AB4,AD10,EAD的一點,且AE2,MAB上一點,射線MECD的延長線于點F,EGMEBC于點G,連接MG,FG,FGAD于點N

1)當(dāng)點MAB中點時,則DF   ,FG   .(直接寫出答案)

2)在整個運動過程中,的值是否會變化,若不變,求出它的值;若變化,請說明理由.

3)若△EGN為等腰三角形時,請求出所有滿足條件的AM的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2018年某省實施人才引進政策,對引進人才給予資金扶持和落戶優(yōu)惠,海內(nèi)外英才紛紛向組織部門遞交報名表.為了了解報名人員年齡結(jié)構(gòu)情況,抽樣調(diào)查了50名報名人員的年齡(單位:歲),將抽樣得到的數(shù)據(jù)分成5組,統(tǒng)計如下表:

分組

頻數(shù)(人數(shù))

頻率

30歲以下

0.16

大于30歲不大于40

20

0.40

大于40歲不大于50

14

大于50歲不大于60

6

0.12

60歲以上

1)請將表格中空格填寫完整;

2)樣本數(shù)據(jù)的中位數(shù)落在_____,若把樣本數(shù)據(jù)制成扇形統(tǒng)計圖,則“大于30歲不大于40歲”的圓心角為______度;

3)如果共有2000人報名,請你根據(jù)上面數(shù)據(jù),估計年齡不大于40歲的報名人員會有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“機動車行駛到斑馬線要禮讓行人”等交通法規(guī)實施后,某校共有3000人,數(shù)學(xué)課外實踐小組就對這些交通法規(guī)的了解情況在全校隨機調(diào)查了部分學(xué)生,調(diào)查結(jié)果分為四種:A.非常了解,B.比較了解,C.基本了解,D.不太了解,實踐小組把此次調(diào)查結(jié)果整理并繪制成下面不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖.

請結(jié)合圖中所給的信息解答下列問題:

1)扇形統(tǒng)計圖中C所對應(yīng)的扇形圓心角度數(shù)為   ;估計全校非常了解交通法規(guī)的有   人.

2)補全條形統(tǒng)計圖;

3)學(xué)校準(zhǔn)備從組內(nèi)的甲、乙、丙、丁四位學(xué)生中隨機抽取兩名學(xué)生參加市區(qū)交通法規(guī)競賽,請用列表或畫樹狀圖的方法求丙和丁兩名同學(xué)同事被選中的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, 在三邊互不相等的ABC中, D,E,F分別是AB,AC,BC邊的中點.連接DE,過點CCMABDE的延長線于點M,連接CD、EF交于點N,則圖中全等三角形共有(

A.3B.4C.5D.6

查看答案和解析>>

同步練習(xí)冊答案